{"title":"闵可夫斯基四空间中具有时轴的类时旋转超曲面","authors":"Erhan Güler","doi":"10.31801/cfsuasmas.1062426","DOIUrl":null,"url":null,"abstract":"We introduce the timelike rotational hypersurfaces $\\textbf{x}$ with timelike axis in Minkowski 4-space $\\mathbb{E}_1^{4}$. We obtain the equations for the curvatures of the hypersurface. Moreover, we present a theorem for the rotational hypersurfaces with timelike axis supplying $\\Delta\\textbf{x}=\\mathcal{T}\\textbf{x}$, where $\\mathcal{T}$ is a 4x4 real matrix.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timelike rotational hypersurfaces with timelike axis in Minkowski four-space\",\"authors\":\"Erhan Güler\",\"doi\":\"10.31801/cfsuasmas.1062426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the timelike rotational hypersurfaces $\\\\textbf{x}$ with timelike axis in Minkowski 4-space $\\\\mathbb{E}_1^{4}$. We obtain the equations for the curvatures of the hypersurface. Moreover, we present a theorem for the rotational hypersurfaces with timelike axis supplying $\\\\Delta\\\\textbf{x}=\\\\mathcal{T}\\\\textbf{x}$, where $\\\\mathcal{T}$ is a 4x4 real matrix.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1062426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1062426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Timelike rotational hypersurfaces with timelike axis in Minkowski four-space
We introduce the timelike rotational hypersurfaces $\textbf{x}$ with timelike axis in Minkowski 4-space $\mathbb{E}_1^{4}$. We obtain the equations for the curvatures of the hypersurface. Moreover, we present a theorem for the rotational hypersurfaces with timelike axis supplying $\Delta\textbf{x}=\mathcal{T}\textbf{x}$, where $\mathcal{T}$ is a 4x4 real matrix.