{"title":"木质植物物种在火灾通道中的恢复力方面:以特列姆岑山脉的球栎为例(阿尔及利亚)","authors":"Asma Rafa, M. Berrichi, A. Haddad","doi":"10.22453/LSJ-021.2.119-128","DOIUrl":null,"url":null,"abstract":"In this study, on the aspects of the resilience of woody species to the passage of fire, we wanted to test the alveolar specificity represented by the size of the pores of the secondary xylem of the root system in Quercus coccifera L., Pore size assessment is based on measuring 100 pores in cross sections, from the roots of 10 shrubs. The aim of this study is to explain how the roots can maintain their vitality after passing a fire and thus guarantee regeneration. In addition to the vigor of the root system of this species, the release of pyrolysis gases and the propagation of heat by conduction are provided by the porosity of the material. The results show that the pores are qualified as “fine” in the initial wood with an average diameter of 83.35 µm. In final wood, they are \"very thin\" with 42.30 µm in diameter. The absence of oxygen and the less porous structure delay the combustion cycle of the root system, the roots distant from the surface are thus protected from proliferation by heat conduction and thus guarantee regeneration.","PeriodicalId":31081,"journal":{"name":"Lebanese Science Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience aspects of woody plant species at the passage of fire: case of Quercus coccifera in Tlemcen Mountains (Algeria)\",\"authors\":\"Asma Rafa, M. Berrichi, A. Haddad\",\"doi\":\"10.22453/LSJ-021.2.119-128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, on the aspects of the resilience of woody species to the passage of fire, we wanted to test the alveolar specificity represented by the size of the pores of the secondary xylem of the root system in Quercus coccifera L., Pore size assessment is based on measuring 100 pores in cross sections, from the roots of 10 shrubs. The aim of this study is to explain how the roots can maintain their vitality after passing a fire and thus guarantee regeneration. In addition to the vigor of the root system of this species, the release of pyrolysis gases and the propagation of heat by conduction are provided by the porosity of the material. The results show that the pores are qualified as “fine” in the initial wood with an average diameter of 83.35 µm. In final wood, they are \\\"very thin\\\" with 42.30 µm in diameter. The absence of oxygen and the less porous structure delay the combustion cycle of the root system, the roots distant from the surface are thus protected from proliferation by heat conduction and thus guarantee regeneration.\",\"PeriodicalId\":31081,\"journal\":{\"name\":\"Lebanese Science Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lebanese Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22453/LSJ-021.2.119-128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lebanese Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22453/LSJ-021.2.119-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resilience aspects of woody plant species at the passage of fire: case of Quercus coccifera in Tlemcen Mountains (Algeria)
In this study, on the aspects of the resilience of woody species to the passage of fire, we wanted to test the alveolar specificity represented by the size of the pores of the secondary xylem of the root system in Quercus coccifera L., Pore size assessment is based on measuring 100 pores in cross sections, from the roots of 10 shrubs. The aim of this study is to explain how the roots can maintain their vitality after passing a fire and thus guarantee regeneration. In addition to the vigor of the root system of this species, the release of pyrolysis gases and the propagation of heat by conduction are provided by the porosity of the material. The results show that the pores are qualified as “fine” in the initial wood with an average diameter of 83.35 µm. In final wood, they are "very thin" with 42.30 µm in diameter. The absence of oxygen and the less porous structure delay the combustion cycle of the root system, the roots distant from the surface are thus protected from proliferation by heat conduction and thus guarantee regeneration.