ISIS散裂靶的衰变热:模拟与测量

IF 1 Q3 NUCLEAR SCIENCE & TECHNOLOGY
L. Quintieri, S. Lilley, D. Wilcox, D. Findlay, D. Jenkins, S. Gallimore, D. Haynes
{"title":"ISIS散裂靶的衰变热:模拟与测量","authors":"L. Quintieri, S. Lilley, D. Wilcox, D. Findlay, D. Jenkins, S. Gallimore, D. Haynes","doi":"10.3233/jnr-220030","DOIUrl":null,"url":null,"abstract":"Spallation targets for neutron production with high energy protons are made of high density and high atomic number materials in order to maximise the yield of neutrons for all the instruments around. Operating a proton beam onto a spallation target produces residual radioactive nuclei either as direct product of the spallation process and as secondary low energy neutron absorption. A reliable estimation of the overall activation and decay heat, as a function of the cooling time and irradiation profile history, is fundamental for a valuable design of the radiation shielding and cooling system during the operation phase as well for envisaging the optimal storage solution at the end of life of the target. This work presents the comparison between the FLUKA predictions of the decay heat in the ISIS TS1 target operated between 2014 and 2019 and the decay heat estimations derived from the measurement of the temperature in each plate at different cooling times. The agreement between the FLUKA predictions and the experimentally assessed values shows and quantifies the goodness of the FLUKA model in predicting measurable physical quantities relevant for the engineering thermal design of the target/reflector and moderator (TRAM) assembly. In addition, it also provides an indirect evidence of the accuracy of the simulated spallation physics and neutron transport throughout the TRAM assembly. Finally this work attempts to highlight and propose a general empirical procedure that could be eventually applied and used to proficiently measure the decay heat at whatever cooling time in targets with similar ISIS design.","PeriodicalId":44708,"journal":{"name":"Journal of Neutron Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay heat in ISIS spallation target: simulations and measurements\",\"authors\":\"L. Quintieri, S. Lilley, D. Wilcox, D. Findlay, D. Jenkins, S. Gallimore, D. Haynes\",\"doi\":\"10.3233/jnr-220030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spallation targets for neutron production with high energy protons are made of high density and high atomic number materials in order to maximise the yield of neutrons for all the instruments around. Operating a proton beam onto a spallation target produces residual radioactive nuclei either as direct product of the spallation process and as secondary low energy neutron absorption. A reliable estimation of the overall activation and decay heat, as a function of the cooling time and irradiation profile history, is fundamental for a valuable design of the radiation shielding and cooling system during the operation phase as well for envisaging the optimal storage solution at the end of life of the target. This work presents the comparison between the FLUKA predictions of the decay heat in the ISIS TS1 target operated between 2014 and 2019 and the decay heat estimations derived from the measurement of the temperature in each plate at different cooling times. The agreement between the FLUKA predictions and the experimentally assessed values shows and quantifies the goodness of the FLUKA model in predicting measurable physical quantities relevant for the engineering thermal design of the target/reflector and moderator (TRAM) assembly. In addition, it also provides an indirect evidence of the accuracy of the simulated spallation physics and neutron transport throughout the TRAM assembly. Finally this work attempts to highlight and propose a general empirical procedure that could be eventually applied and used to proficiently measure the decay heat at whatever cooling time in targets with similar ISIS design.\",\"PeriodicalId\":44708,\"journal\":{\"name\":\"Journal of Neutron Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neutron Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jnr-220030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutron Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

用高能质子产生中子的散裂靶是由高密度和高原子序数的材料制成的,以便使周围所有仪器的中子产量最大化。在散裂靶上操作质子束会产生残余的放射性核,这要么是散裂过程的直接产物,要么是次级低能中子吸收。作为冷却时间和辐照剖面历史的函数,对总体活化热和衰变热的可靠估计是运行阶段辐射屏蔽和冷却系统有价值设计的基础,也是在目标寿命结束时设想最佳存储解决方案的基础。本研究比较了2014年至2019年期间运行的ISIS TS1目标的FLUKA预测和不同冷却时间下每个板的温度测量得出的衰减热估计。FLUKA预测与实验评估值之间的一致性显示并量化了FLUKA模型在预测与目标/反射器和慢化剂(TRAM)组件的工程热设计相关的可测量物理量方面的优点。此外,它还间接证明了模拟散裂物理和中子输运在整个TRAM组件中的准确性。最后,本工作试图强调并提出一个一般的经验程序,该程序最终可以应用并用于熟练地测量具有类似ISIS设计的目标在任何冷却时间的衰变热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay heat in ISIS spallation target: simulations and measurements
Spallation targets for neutron production with high energy protons are made of high density and high atomic number materials in order to maximise the yield of neutrons for all the instruments around. Operating a proton beam onto a spallation target produces residual radioactive nuclei either as direct product of the spallation process and as secondary low energy neutron absorption. A reliable estimation of the overall activation and decay heat, as a function of the cooling time and irradiation profile history, is fundamental for a valuable design of the radiation shielding and cooling system during the operation phase as well for envisaging the optimal storage solution at the end of life of the target. This work presents the comparison between the FLUKA predictions of the decay heat in the ISIS TS1 target operated between 2014 and 2019 and the decay heat estimations derived from the measurement of the temperature in each plate at different cooling times. The agreement between the FLUKA predictions and the experimentally assessed values shows and quantifies the goodness of the FLUKA model in predicting measurable physical quantities relevant for the engineering thermal design of the target/reflector and moderator (TRAM) assembly. In addition, it also provides an indirect evidence of the accuracy of the simulated spallation physics and neutron transport throughout the TRAM assembly. Finally this work attempts to highlight and propose a general empirical procedure that could be eventually applied and used to proficiently measure the decay heat at whatever cooling time in targets with similar ISIS design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neutron Research
Journal of Neutron Research NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信