Dodgson多项式恒等式

IF 1.2 3区 数学 Q1 MATHEMATICS
Marcel Golz
{"title":"Dodgson多项式恒等式","authors":"Marcel Golz","doi":"10.4310/cntp.2019.v13.n4.a1","DOIUrl":null,"url":null,"abstract":"Dodgson polynomials appear in Schwinger parametric Feynman integrals and are closely related to the well known Kirchhoff (or first Symanzik) polynomial. In this article a new combinatorial interpretation and a generalisation of Dodgson polynomials are provided. This leads to two new identities that relate large sums of products of Dodgson polynomials to a much simpler expression involving powers of the Kirchhoff polynomial. These identities can be applied to the parametric integrand for quantum electrodynamics, simplifying it significantly. This is worked out here in detail on the example of superficially renormalised photon propagator Feynman graphs, but works much more generally.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Dodgson polynomial identities\",\"authors\":\"Marcel Golz\",\"doi\":\"10.4310/cntp.2019.v13.n4.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dodgson polynomials appear in Schwinger parametric Feynman integrals and are closely related to the well known Kirchhoff (or first Symanzik) polynomial. In this article a new combinatorial interpretation and a generalisation of Dodgson polynomials are provided. This leads to two new identities that relate large sums of products of Dodgson polynomials to a much simpler expression involving powers of the Kirchhoff polynomial. These identities can be applied to the parametric integrand for quantum electrodynamics, simplifying it significantly. This is worked out here in detail on the example of superficially renormalised photon propagator Feynman graphs, but works much more generally.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2019.v13.n4.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2019.v13.n4.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

Dodgson多项式出现在Schwinger参数Feynman积分中,并且与众所周知的Kirchhoff(或第一Symanzik)多项式密切相关。本文对Dodgson多项式进行了新的组合解释和推广。这导致了两个新的恒等式,它们将Dodgson多项式的乘积的大和与涉及Kirchhoff多项式幂的更简单的表达式联系起来。这些恒等式可以应用于量子电动力学的参数被积函数,大大简化了它。这是在表面上重新标准化的光子传播子-费曼图的例子中详细计算出来的,但更普遍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dodgson polynomial identities
Dodgson polynomials appear in Schwinger parametric Feynman integrals and are closely related to the well known Kirchhoff (or first Symanzik) polynomial. In this article a new combinatorial interpretation and a generalisation of Dodgson polynomials are provided. This leads to two new identities that relate large sums of products of Dodgson polynomials to a much simpler expression involving powers of the Kirchhoff polynomial. These identities can be applied to the parametric integrand for quantum electrodynamics, simplifying it significantly. This is worked out here in detail on the example of superficially renormalised photon propagator Feynman graphs, but works much more generally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信