Milica Andelic, Carlos M. da Fonseca, E. Kılıç, Z. Stanić
{"title":"Sylvester-Kac矩阵型与半图的拉普拉斯可控性","authors":"Milica Andelic, Carlos M. da Fonseca, E. Kılıç, Z. Stanić","doi":"10.13001/ela.2022.6947","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a new family of tridiagonal matrices whose eigenvalues are perfect squares. This result motivates the computation of the spectrum of a particular antibidiagonal matrix. As an application, we consider the Laplacian controllability of a particular subclass of chain graphs known as half graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Sylvester-Kac matrix type and the Laplacian controllability of half graphs\",\"authors\":\"Milica Andelic, Carlos M. da Fonseca, E. Kılıç, Z. Stanić\",\"doi\":\"10.13001/ela.2022.6947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a new family of tridiagonal matrices whose eigenvalues are perfect squares. This result motivates the computation of the spectrum of a particular antibidiagonal matrix. As an application, we consider the Laplacian controllability of a particular subclass of chain graphs known as half graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sylvester-Kac matrix type and the Laplacian controllability of half graphs
In this paper, we provide a new family of tridiagonal matrices whose eigenvalues are perfect squares. This result motivates the computation of the spectrum of a particular antibidiagonal matrix. As an application, we consider the Laplacian controllability of a particular subclass of chain graphs known as half graphs.