交换弱调用-清洁群环

Q3 Mathematics
P. Danchev
{"title":"交换弱调用-清洁群环","authors":"P. Danchev","doi":"10.15826/UMJ.2019.1.005","DOIUrl":null,"url":null,"abstract":"A ring \\(R\\) is called weakly invo-clean if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring \\(R\\) and each abelian group \\(G\\), we find only in terms of \\(R\\), \\(G\\) and their sections a necessary and sufficient condition when the group ring \\(R[G]\\) is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutative Weakly Invo–Clean Group Rings\",\"authors\":\"P. Danchev\",\"doi\":\"10.15826/UMJ.2019.1.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A ring \\\\(R\\\\) is called weakly invo-clean if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring \\\\(R\\\\) and each abelian group \\\\(G\\\\), we find only in terms of \\\\(R\\\\), \\\\(G\\\\) and their sections a necessary and sufficient condition when the group ring \\\\(R[G]\\\\) is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/UMJ.2019.1.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/UMJ.2019.1.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

一个环\(R\)如果它的任何元素是对合和幂等的和或差,则称为弱对合环。对于每一个交换一元环\(R\)和每一个阿贝尔群\(G\),我们只在\(R\), \(G\)及其节的项中找到了群环\(R[G]\)弱邀约的充分必要条件。我们建立的结果与danchevv - mcgovern在J. Algebra(2015)上发表的结果相似,并证明了弱零清洁环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commutative Weakly Invo–Clean Group Rings
A ring \(R\) is called weakly invo-clean if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring \(R\) and each abelian group \(G\), we find only in terms of \(R\), \(G\) and their sections a necessary and sufficient condition when the group ring \(R[G]\) is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信