{"title":"新冠肺炎疫情后中国股市的行业风险传染和分位数网络连通性","authors":"Yang Gao, Wanqi Zheng, Yaojun Wang","doi":"10.1108/cfri-02-2023-0039","DOIUrl":null,"url":null,"abstract":"PurposeThis study aims to explore the risk spillover effects among different sectors of the Chinese stock market after the outbreak of COVID-19 from both Internet sentiment and price fluctuations.Design/methodology/approachThe authors develop four indicators used for risk contagion analysis, including Internet investors and news sentiments constructed by the FinBERT model, together with realized and jump volatilities yielded by high-frequency data. The authors also apply the time-varying parameter vector autoregressive (TVP-VAR) model-based and the tail-based connectedness framework to investigate the interdependence of tail risk during catastrophic events.FindingsThe empirical analysis provides meaningful results related to the COVID-19 pandemic, stock market conditions and tail behavior. The results show that after the outbreak of COVID-19, the connectivity between risk spillovers in China's stock market has grown, indicating the increased instability of the connected system and enhanced connectivity in the tail. The changes in network structure during COVID-19 pandemic are not only reflected by the increased spillover connectivity but also by the closer relationships between some industries. The authors also found that major public events could significantly impact total connectedness. In addition, spillovers and network structures vary with market conditions and tend to exhibit a highly connected network structure during extreme market status.Originality/valueThe results confirm the connectivity between sentiments and volatilities spillovers in China's stock market, especially in the tails. The conclusion further expands the practical application and theoretical framework of behavioral finance and also lays a theoretical basis for investors to focus on the practical application of volatility prediction and risk management across stock sectors.","PeriodicalId":44440,"journal":{"name":"China Finance Review International","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sectoral risk contagion and quantile network connectedness on Chinese stock sectors after the COVID-19 outbreak\",\"authors\":\"Yang Gao, Wanqi Zheng, Yaojun Wang\",\"doi\":\"10.1108/cfri-02-2023-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study aims to explore the risk spillover effects among different sectors of the Chinese stock market after the outbreak of COVID-19 from both Internet sentiment and price fluctuations.Design/methodology/approachThe authors develop four indicators used for risk contagion analysis, including Internet investors and news sentiments constructed by the FinBERT model, together with realized and jump volatilities yielded by high-frequency data. The authors also apply the time-varying parameter vector autoregressive (TVP-VAR) model-based and the tail-based connectedness framework to investigate the interdependence of tail risk during catastrophic events.FindingsThe empirical analysis provides meaningful results related to the COVID-19 pandemic, stock market conditions and tail behavior. The results show that after the outbreak of COVID-19, the connectivity between risk spillovers in China's stock market has grown, indicating the increased instability of the connected system and enhanced connectivity in the tail. The changes in network structure during COVID-19 pandemic are not only reflected by the increased spillover connectivity but also by the closer relationships between some industries. The authors also found that major public events could significantly impact total connectedness. In addition, spillovers and network structures vary with market conditions and tend to exhibit a highly connected network structure during extreme market status.Originality/valueThe results confirm the connectivity between sentiments and volatilities spillovers in China's stock market, especially in the tails. The conclusion further expands the practical application and theoretical framework of behavioral finance and also lays a theoretical basis for investors to focus on the practical application of volatility prediction and risk management across stock sectors.\",\"PeriodicalId\":44440,\"journal\":{\"name\":\"China Finance Review International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Finance Review International\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1108/cfri-02-2023-0039\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Finance Review International","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1108/cfri-02-2023-0039","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Sectoral risk contagion and quantile network connectedness on Chinese stock sectors after the COVID-19 outbreak
PurposeThis study aims to explore the risk spillover effects among different sectors of the Chinese stock market after the outbreak of COVID-19 from both Internet sentiment and price fluctuations.Design/methodology/approachThe authors develop four indicators used for risk contagion analysis, including Internet investors and news sentiments constructed by the FinBERT model, together with realized and jump volatilities yielded by high-frequency data. The authors also apply the time-varying parameter vector autoregressive (TVP-VAR) model-based and the tail-based connectedness framework to investigate the interdependence of tail risk during catastrophic events.FindingsThe empirical analysis provides meaningful results related to the COVID-19 pandemic, stock market conditions and tail behavior. The results show that after the outbreak of COVID-19, the connectivity between risk spillovers in China's stock market has grown, indicating the increased instability of the connected system and enhanced connectivity in the tail. The changes in network structure during COVID-19 pandemic are not only reflected by the increased spillover connectivity but also by the closer relationships between some industries. The authors also found that major public events could significantly impact total connectedness. In addition, spillovers and network structures vary with market conditions and tend to exhibit a highly connected network structure during extreme market status.Originality/valueThe results confirm the connectivity between sentiments and volatilities spillovers in China's stock market, especially in the tails. The conclusion further expands the practical application and theoretical framework of behavioral finance and also lays a theoretical basis for investors to focus on the practical application of volatility prediction and risk management across stock sectors.
期刊介绍:
China Finance Review International publishes original and high-quality theoretical and empirical articles focusing on financial and economic issues arising from China's reform, opening-up, economic development, and system transformation. The journal serves as a platform for exchange between Chinese finance scholars and international financial economists, covering a wide range of topics including monetary policy, banking, international trade and finance, corporate finance, asset pricing, market microstructure, corporate governance, incentive studies, fiscal policy, public management, and state-owned enterprise reform.