扩展双曲平面上的二阶双曲Raisa轨道

IF 0.4 Q4 MATHEMATICS
L. Romakina
{"title":"扩展双曲平面上的二阶双曲Raisa轨道","authors":"L. Romakina","doi":"10.36890/IEJG.904467","DOIUrl":null,"url":null,"abstract":"In this paper, we study conics, which are invariant under the hyperbolic inversion with respect to the absolute of an extended hyperbolic plane H of curvature radius ρ, ρ ∈ R+. They are called the hyperbolic Raisa Orbits of the second order. We prove that each hyperbolic Raisa Orbits of the second order in H belongs to one of four conics types of this plane. These types are as follows: the bihyperbolas of one sheet; the hyperbolas; the hyperbolic parabolas of one sheet and two branches; the elliptic cycles of radius πρ/4. The family of all hyperbolic Raisa Orbits from the family of all bihyperbolas of one sheet (or all hyperbolas) defined exactly up to motions, is one-parametric. The family of all hyperbolic Raisa Orbits from the family of all hyperbolic parabolas of one sheet and two branches (or all elliptic cycles) contains a unique conic defined exactly up to motions.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbolic Raisa Orbits of the Second Order in an Extended Hyperbolic Plane\",\"authors\":\"L. Romakina\",\"doi\":\"10.36890/IEJG.904467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study conics, which are invariant under the hyperbolic inversion with respect to the absolute of an extended hyperbolic plane H of curvature radius ρ, ρ ∈ R+. They are called the hyperbolic Raisa Orbits of the second order. We prove that each hyperbolic Raisa Orbits of the second order in H belongs to one of four conics types of this plane. These types are as follows: the bihyperbolas of one sheet; the hyperbolas; the hyperbolic parabolas of one sheet and two branches; the elliptic cycles of radius πρ/4. The family of all hyperbolic Raisa Orbits from the family of all bihyperbolas of one sheet (or all hyperbolas) defined exactly up to motions, is one-parametric. The family of all hyperbolic Raisa Orbits from the family of all hyperbolic parabolas of one sheet and two branches (or all elliptic cycles) contains a unique conic defined exactly up to motions.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/IEJG.904467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/IEJG.904467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了关于曲率半径为ρ,ρ∈R+的扩展双曲平面H的绝对值在双曲反演下不变的二次曲线。它们被称为二阶双曲Raisa轨道。我们证明了H中每一个二阶双曲Raisa轨道都属于该平面的四个二次曲面类型之一。这些类型如下:一张纸的双曲面;双曲线;一片两支的双曲抛物面;半径为πρ/4的椭圆周期。从一张纸(或所有双曲线)的所有双曲面族到运动,所有双曲Raisa轨道的族都是一个参数。一个片和两个分支(或所有椭圆周期)的所有双曲抛物面族中的所有双曲Raisa轨道族包含一个精确定义为运动的唯一圆锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbolic Raisa Orbits of the Second Order in an Extended Hyperbolic Plane
In this paper, we study conics, which are invariant under the hyperbolic inversion with respect to the absolute of an extended hyperbolic plane H of curvature radius ρ, ρ ∈ R+. They are called the hyperbolic Raisa Orbits of the second order. We prove that each hyperbolic Raisa Orbits of the second order in H belongs to one of four conics types of this plane. These types are as follows: the bihyperbolas of one sheet; the hyperbolas; the hyperbolic parabolas of one sheet and two branches; the elliptic cycles of radius πρ/4. The family of all hyperbolic Raisa Orbits from the family of all bihyperbolas of one sheet (or all hyperbolas) defined exactly up to motions, is one-parametric. The family of all hyperbolic Raisa Orbits from the family of all hyperbolic parabolas of one sheet and two branches (or all elliptic cycles) contains a unique conic defined exactly up to motions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信