{"title":"扩展双曲平面上的二阶双曲Raisa轨道","authors":"L. Romakina","doi":"10.36890/IEJG.904467","DOIUrl":null,"url":null,"abstract":"In this paper, we study conics, which are invariant under the hyperbolic inversion with respect to the absolute of an extended hyperbolic plane H of curvature radius ρ, ρ ∈ R+. They are called the hyperbolic Raisa Orbits of the second order. We prove that each hyperbolic Raisa Orbits of the second order in H belongs to one of four conics types of this plane. These types are as follows: the bihyperbolas of one sheet; the hyperbolas; the hyperbolic parabolas of one sheet and two branches; the elliptic cycles of radius πρ/4. The family of all hyperbolic Raisa Orbits from the family of all bihyperbolas of one sheet (or all hyperbolas) defined exactly up to motions, is one-parametric. The family of all hyperbolic Raisa Orbits from the family of all hyperbolic parabolas of one sheet and two branches (or all elliptic cycles) contains a unique conic defined exactly up to motions.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbolic Raisa Orbits of the Second Order in an Extended Hyperbolic Plane\",\"authors\":\"L. Romakina\",\"doi\":\"10.36890/IEJG.904467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study conics, which are invariant under the hyperbolic inversion with respect to the absolute of an extended hyperbolic plane H of curvature radius ρ, ρ ∈ R+. They are called the hyperbolic Raisa Orbits of the second order. We prove that each hyperbolic Raisa Orbits of the second order in H belongs to one of four conics types of this plane. These types are as follows: the bihyperbolas of one sheet; the hyperbolas; the hyperbolic parabolas of one sheet and two branches; the elliptic cycles of radius πρ/4. The family of all hyperbolic Raisa Orbits from the family of all bihyperbolas of one sheet (or all hyperbolas) defined exactly up to motions, is one-parametric. The family of all hyperbolic Raisa Orbits from the family of all hyperbolic parabolas of one sheet and two branches (or all elliptic cycles) contains a unique conic defined exactly up to motions.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/IEJG.904467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/IEJG.904467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hyperbolic Raisa Orbits of the Second Order in an Extended Hyperbolic Plane
In this paper, we study conics, which are invariant under the hyperbolic inversion with respect to the absolute of an extended hyperbolic plane H of curvature radius ρ, ρ ∈ R+. They are called the hyperbolic Raisa Orbits of the second order. We prove that each hyperbolic Raisa Orbits of the second order in H belongs to one of four conics types of this plane. These types are as follows: the bihyperbolas of one sheet; the hyperbolas; the hyperbolic parabolas of one sheet and two branches; the elliptic cycles of radius πρ/4. The family of all hyperbolic Raisa Orbits from the family of all bihyperbolas of one sheet (or all hyperbolas) defined exactly up to motions, is one-parametric. The family of all hyperbolic Raisa Orbits from the family of all hyperbolic parabolas of one sheet and two branches (or all elliptic cycles) contains a unique conic defined exactly up to motions.