J. P. Gandreddi, A. Kromanis, J. Lungevičs, E. Jost
{"title":"钛合金(Ti6Al4V)可加工性综述及加工参数的选择","authors":"J. P. Gandreddi, A. Kromanis, J. Lungevičs, E. Jost","doi":"10.2478/lpts-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract Machining of titanium alloy Ti6Al4V is a challenging task for the industry; however, there are some solutions to overcome these difficulties. One of those is optimizing the machining parameters. Machining of Ti6Al4V made by additive manufacturing is an emerging future and is even more difficult when comparing to standard Ti6Al4V alloy. There is lot of invention on Ti6AL4V 3D printed samples, but influence of machining post-printing is lacking. In additive manufacturing of Ti6Al4V alloy, it is necessary to make a finishing operation to improve the surface quality and to ensure precise geometry tolerances. During this process, it may affect the workpiece properties such as microhardness, microstructure, internal defect distribution, internal stresses. During printing there are lots of stresses created, heat treatment is done to normalize the parts. Machining (using milling machine) also causes internal stresses which can damage the surface and part itself. Optimisation of machining parameters and printing parameters can solve this issue. This study gives an overview of selection of machining parameters by considering all the previous relevant research.","PeriodicalId":43603,"journal":{"name":"Latvian Journal of Physics and Technical Sciences","volume":"60 1","pages":"52 - 66"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overview of Machinability of Titanium Alloy (Ti6Al4V) and Selection of Machining Parameters\",\"authors\":\"J. P. Gandreddi, A. Kromanis, J. Lungevičs, E. Jost\",\"doi\":\"10.2478/lpts-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Machining of titanium alloy Ti6Al4V is a challenging task for the industry; however, there are some solutions to overcome these difficulties. One of those is optimizing the machining parameters. Machining of Ti6Al4V made by additive manufacturing is an emerging future and is even more difficult when comparing to standard Ti6Al4V alloy. There is lot of invention on Ti6AL4V 3D printed samples, but influence of machining post-printing is lacking. In additive manufacturing of Ti6Al4V alloy, it is necessary to make a finishing operation to improve the surface quality and to ensure precise geometry tolerances. During this process, it may affect the workpiece properties such as microhardness, microstructure, internal defect distribution, internal stresses. During printing there are lots of stresses created, heat treatment is done to normalize the parts. Machining (using milling machine) also causes internal stresses which can damage the surface and part itself. Optimisation of machining parameters and printing parameters can solve this issue. This study gives an overview of selection of machining parameters by considering all the previous relevant research.\",\"PeriodicalId\":43603,\"journal\":{\"name\":\"Latvian Journal of Physics and Technical Sciences\",\"volume\":\"60 1\",\"pages\":\"52 - 66\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latvian Journal of Physics and Technical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/lpts-2023-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latvian Journal of Physics and Technical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/lpts-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Overview of Machinability of Titanium Alloy (Ti6Al4V) and Selection of Machining Parameters
Abstract Machining of titanium alloy Ti6Al4V is a challenging task for the industry; however, there are some solutions to overcome these difficulties. One of those is optimizing the machining parameters. Machining of Ti6Al4V made by additive manufacturing is an emerging future and is even more difficult when comparing to standard Ti6Al4V alloy. There is lot of invention on Ti6AL4V 3D printed samples, but influence of machining post-printing is lacking. In additive manufacturing of Ti6Al4V alloy, it is necessary to make a finishing operation to improve the surface quality and to ensure precise geometry tolerances. During this process, it may affect the workpiece properties such as microhardness, microstructure, internal defect distribution, internal stresses. During printing there are lots of stresses created, heat treatment is done to normalize the parts. Machining (using milling machine) also causes internal stresses which can damage the surface and part itself. Optimisation of machining parameters and printing parameters can solve this issue. This study gives an overview of selection of machining parameters by considering all the previous relevant research.
期刊介绍:
Latvian Journal of Physics and Technical Sciences (Latvijas Fizikas un Tehnisko Zinātņu Žurnāls) publishes experimental and theoretical papers containing results not published previously and review articles. Its scope includes Energy and Power, Energy Engineering, Energy Policy and Economics, Physical Sciences, Physics and Applied Physics in Engineering, Astronomy and Spectroscopy.