{"title":"代数自同构形式的同余与超三尖体表示","authors":"Jessica Fintzen, S. Shin","doi":"10.4310/cjm.2021.v9.n2.a2","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected reductive group over a totally real field $F$ which is compact modulo center at archimedean places. We find congruences modulo an arbitrary power of p between the space of arbitrary automorphic forms on $G(\\mathbb A_F)$ and that of automorphic forms with supercuspidal components at p, provided that p is larger than the Coxeter number of the absolute Weyl group of $G$. We illustrate how such congruences can be applied in the construction of Galois representations. \nOur proof is based on type theory for representations of p-adic groups, generalizing the prototypical case of GL(2) in [arXiv:1506.04022, Section 7] to general reductive groups. We exhibit a plethora of new supercuspidal types consisting of arbitrarily small compact open subgroups and characters thereof. We expect these results of independent interest to have further applications. For example, we extend the result by Emerton--Paskūnas on density of supercuspidal points from definite unitary groups to general $G$ as above.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Congruences of algebraic automorphic forms and supercuspidal representations\",\"authors\":\"Jessica Fintzen, S. Shin\",\"doi\":\"10.4310/cjm.2021.v9.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a connected reductive group over a totally real field $F$ which is compact modulo center at archimedean places. We find congruences modulo an arbitrary power of p between the space of arbitrary automorphic forms on $G(\\\\mathbb A_F)$ and that of automorphic forms with supercuspidal components at p, provided that p is larger than the Coxeter number of the absolute Weyl group of $G$. We illustrate how such congruences can be applied in the construction of Galois representations. \\nOur proof is based on type theory for representations of p-adic groups, generalizing the prototypical case of GL(2) in [arXiv:1506.04022, Section 7] to general reductive groups. We exhibit a plethora of new supercuspidal types consisting of arbitrarily small compact open subgroups and characters thereof. We expect these results of independent interest to have further applications. For example, we extend the result by Emerton--Paskūnas on density of supercuspidal points from definite unitary groups to general $G$ as above.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2021.v9.n2.a2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2021.v9.n2.a2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Congruences of algebraic automorphic forms and supercuspidal representations
Let $G$ be a connected reductive group over a totally real field $F$ which is compact modulo center at archimedean places. We find congruences modulo an arbitrary power of p between the space of arbitrary automorphic forms on $G(\mathbb A_F)$ and that of automorphic forms with supercuspidal components at p, provided that p is larger than the Coxeter number of the absolute Weyl group of $G$. We illustrate how such congruences can be applied in the construction of Galois representations.
Our proof is based on type theory for representations of p-adic groups, generalizing the prototypical case of GL(2) in [arXiv:1506.04022, Section 7] to general reductive groups. We exhibit a plethora of new supercuspidal types consisting of arbitrarily small compact open subgroups and characters thereof. We expect these results of independent interest to have further applications. For example, we extend the result by Emerton--Paskūnas on density of supercuspidal points from definite unitary groups to general $G$ as above.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.