最明亮的超新星

IF 26.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
A. Gal-yam
{"title":"最明亮的超新星","authors":"A. Gal-yam","doi":"10.1146/annurev-astro-081817-051819","DOIUrl":null,"url":null,"abstract":"Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100 times) those of normal events has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions. ▪ SLSNe can be classified into hydrogen-poor (SLSNe-I) and hydrogen-rich (SLSNe-II) events. ▪ Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of [Formula: see text] mag at peak appears to separate SLSNe-I from the normal population. ▪ SLSN-I light curves can be quite complex, presenting both early bumps and late postpeak undulations. ▪ SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase. ▪ SLSNe-II are not nearly as well studied, lacking information based on large-sample studies. Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars ([Formula: see text] M[Formula: see text]). Host galaxies of SLSNe in the nearby Universe tend to have low mass and subsolar metallicity. SLSNe are rare, with rates <100 times lower than ordinary supernovae. SLSN cosmology and their use as beacons to study the high-redshift Universe offer exciting prospects.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-astro-081817-051819","citationCount":"105","resultStr":"{\"title\":\"The Most Luminous Supernovae\",\"authors\":\"A. Gal-yam\",\"doi\":\"10.1146/annurev-astro-081817-051819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100 times) those of normal events has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions. ▪ SLSNe can be classified into hydrogen-poor (SLSNe-I) and hydrogen-rich (SLSNe-II) events. ▪ Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of [Formula: see text] mag at peak appears to separate SLSNe-I from the normal population. ▪ SLSN-I light curves can be quite complex, presenting both early bumps and late postpeak undulations. ▪ SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase. ▪ SLSNe-II are not nearly as well studied, lacking information based on large-sample studies. Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars ([Formula: see text] M[Formula: see text]). Host galaxies of SLSNe in the nearby Universe tend to have low mass and subsolar metallicity. SLSNe are rare, with rates <100 times lower than ordinary supernovae. SLSN cosmology and their use as beacons to study the high-redshift Universe offer exciting prospects.\",\"PeriodicalId\":8138,\"journal\":{\"name\":\"Annual Review of Astronomy and Astrophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":26.3000,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-astro-081817-051819\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-astro-081817-051819\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-astro-081817-051819","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 105

摘要

十多年前,已经发现了一组超新星爆炸,其峰值亮度远远超过(通常是正常事件的100倍以上)。这些超亮超新星(SLSNe)一直是深入研究的焦点。我回顾了累积的观测结果,并讨论了这些极端爆炸对物理学的影响。▪ SLSNe可分为贫氢(SLSNe-I)和富氢(SLSNe-II)事件。▪ 结合对附近SLSNe-I和较低光度事件样本的光度和光谱分析,峰值处的阈值[公式:见正文]mag似乎将SLSNe-I与正常总体分离。▪ SLSN-I光曲线可能相当复杂,既有早期的起伏,也有后期的峰后起伏。▪ SLSNe-I在光谱上从具有蓝色连续体和弱吸收线的早期热光球相,经过类似于SNe-Ic光谱的冷光球相演化到晚期星云相。▪ SLSNe II没有得到很好的研究,缺乏基于大样本研究的信息。SLSN电源的拟议模型难以解释所有观测结果。SLSNe产生于大质量的祖先,一些事件与大质量恒星有关([公式:见正文]M[公式:参见正文])。在附近的宇宙中,SLSNe的宿主星系往往具有低质量和亚极金属性。SLSNe是罕见的,其发生率低于普通超新星的100倍。SLSN宇宙学及其作为信标研究高红移宇宙提供了令人兴奋的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Most Luminous Supernovae
Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100 times) those of normal events has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions. ▪ SLSNe can be classified into hydrogen-poor (SLSNe-I) and hydrogen-rich (SLSNe-II) events. ▪ Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of [Formula: see text] mag at peak appears to separate SLSNe-I from the normal population. ▪ SLSN-I light curves can be quite complex, presenting both early bumps and late postpeak undulations. ▪ SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase. ▪ SLSNe-II are not nearly as well studied, lacking information based on large-sample studies. Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars ([Formula: see text] M[Formula: see text]). Host galaxies of SLSNe in the nearby Universe tend to have low mass and subsolar metallicity. SLSNe are rare, with rates <100 times lower than ordinary supernovae. SLSN cosmology and their use as beacons to study the high-redshift Universe offer exciting prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Astronomy and Astrophysics
Annual Review of Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
54.80
自引率
0.60%
发文量
14
期刊介绍: The Annual Review of Astronomy and Astrophysics is covers significant developments in the field of astronomy and astrophysics including:The Sun,Solar system and extrasolar planets,Stars,Interstellar medium,Galaxy and galaxies,Active galactic nuclei,Cosmology,Instrumentation and techniques, History of the development of new areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信