用于X射线光谱研究的微流体射流中的流层压和快速混合

IF 2.8 Q2 MECHANICS
Diego A. Huyke, Alexandre S. Avaro, T. Kroll, J. Santiago
{"title":"用于X射线光谱研究的微流体射流中的流层压和快速混合","authors":"Diego A. Huyke, Alexandre S. Avaro, T. Kroll, J. Santiago","doi":"10.1017/flo.2023.15","DOIUrl":null,"url":null,"abstract":"Abstract Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called ‘theta’ mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies\",\"authors\":\"Diego A. Huyke, Alexandre S. Avaro, T. Kroll, J. Santiago\",\"doi\":\"10.1017/flo.2023.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called ‘theta’ mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios.\",\"PeriodicalId\":93752,\"journal\":{\"name\":\"Flow (Cambridge, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/flo.2023.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2023.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要微流体混合器为研究微秒级的快速反应动力学提供了新的可能性,软X射线吸收光谱等方法是强大的分析技术。这些系统对混合时间尺度、样本体积、检测区域大小和成分材料施加了具有挑战性的约束。目前的工作提出了一种新型的微混合器和喷射装置,旨在解决这些限制。该系统使用由两个烧结和熔融玻璃毛细管组成的所谓“θ”混合器。样品和载液分别注入相邻毛细管的入口。在下游端,两股气流离开两个微米级的相邻喷嘴,形成一个独立的射流。两个流之间的流速差导致样品流的快速加速和层压。这产生了小的横向尺寸,并在0.9微秒的时间尺度内引起样品和载流溶液的扩散混合。反应发生在自由表面或非常靠近自由表面的地方,因此使用软X射线可以更直接地询问反应物和产物。我们使用简单的扩散模型和荧光猝灭(荧光素与碘化钾的荧光猝灭)的定量测量来表征跨流速比的混合动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stream lamination and rapid mixing in a microfluidic jet for X-ray spectroscopy studies
Abstract Microfluidic mixers offer new possibilities for the study of fast reaction kinetics down to the microsecond time scale, and methods such as soft X-ray absorption spectroscopy are powerful analysis techniques. These systems impose challenging constraints on mixing time scales, sample volume, detection region size and component materials. The current work presents a novel micromixer and jet device which aims to address these limitations. The system uses a so-called ‘theta’ mixer consisting of two sintered and fused glass capillaries. Sample and carrier fluids are injected separately into the inlets of the adjacent capillaries. At the downstream end, the two streams exit two micron-scale adjoining nozzles and form a single free-standing jet. The flow-rate difference between the two streams results in the rapid acceleration and lamination of the sample stream. This creates a small transverse dimension and induces diffusive mixing of the sample and carrier stream solutions within a time scale of 0.9 microseconds. The reaction occurs at or very near a free surface so that reactants and products are more directly accessible to interrogation using soft X-ray. We use a simple diffusion model and quantitative measurements of fluorescence quenching (of fluorescein with potassium iodide) to characterize the mixing dynamics across flow-rate ratios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信