半群上的余弦正弦函数方程

IF 0.4 Q4 MATHEMATICS
B. Ebanks
{"title":"半群上的余弦正弦函数方程","authors":"B. Ebanks","doi":"10.2478/amsil-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract The primary object of study is the “cosine-sine” functional equation f(xy) = f(x)g(y)+g(x)f(y)+h(x)h(y) for unknown functions f, g, h : S → ℂ, where S is a semigroup. The name refers to the fact that it contains both the sine and cosine addition laws. This equation has been solved on groups and on semigroups generated by their squares. Here we find the solutions on a larger class of semigroups and discuss the obstacles to finding a general solution for all semigroups. Examples are given to illustrate both the results and the obstacles. We also discuss the special case f(xy) = f(x)g(y) + g(x)f(y) − g(x)g(y) separately, since it has an independent direct solution on a general semigroup. We give the continuous solutions on topological semigroups for both equations.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"36 1","pages":"30 - 52"},"PeriodicalIF":0.4000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Cosine-Sine Functional Equation on Semigroups\",\"authors\":\"B. Ebanks\",\"doi\":\"10.2478/amsil-2021-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The primary object of study is the “cosine-sine” functional equation f(xy) = f(x)g(y)+g(x)f(y)+h(x)h(y) for unknown functions f, g, h : S → ℂ, where S is a semigroup. The name refers to the fact that it contains both the sine and cosine addition laws. This equation has been solved on groups and on semigroups generated by their squares. Here we find the solutions on a larger class of semigroups and discuss the obstacles to finding a general solution for all semigroups. Examples are given to illustrate both the results and the obstacles. We also discuss the special case f(xy) = f(x)g(y) + g(x)f(y) − g(x)g(y) separately, since it has an independent direct solution on a general semigroup. We give the continuous solutions on topological semigroups for both equations.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"36 1\",\"pages\":\"30 - 52\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2021-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2021-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要研究的主要对象是未知函数f,g,h:S的“余弦-正弦”函数方程f(xy)=f(x)g(y)+g(x)f(y)+h(x)h(y)→ ℂ, 其中S是半群。这个名字是指它同时包含正弦和余弦加法定律。这个方程已经在群和由它们的平方生成的半群上求解。在这里我们找到了一大类半群的解,并讨论了找到所有半群的通解的障碍。举例说明了结果和障碍。我们还分别讨论了特殊情况f(xy)=f(x)g(y)+g(x)f(y)−g(x)g(y),因为它在一般半群上具有独立的直接解。给出了这两个方程在拓扑半群上的连续解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Cosine-Sine Functional Equation on Semigroups
Abstract The primary object of study is the “cosine-sine” functional equation f(xy) = f(x)g(y)+g(x)f(y)+h(x)h(y) for unknown functions f, g, h : S → ℂ, where S is a semigroup. The name refers to the fact that it contains both the sine and cosine addition laws. This equation has been solved on groups and on semigroups generated by their squares. Here we find the solutions on a larger class of semigroups and discuss the obstacles to finding a general solution for all semigroups. Examples are given to illustrate both the results and the obstacles. We also discuss the special case f(xy) = f(x)g(y) + g(x)f(y) − g(x)g(y) separately, since it has an independent direct solution on a general semigroup. We give the continuous solutions on topological semigroups for both equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信