U. K. N. Din, M. Salleh, T. Aziz, A. M. Md Zain, M. A. Mohamed, A. Umar
{"title":"聚合物-无机钙钛矿氧化物复合发光二极管性能的研究:钙钛矿SrTiO3添加剂的影响","authors":"U. K. N. Din, M. Salleh, T. Aziz, A. M. Md Zain, M. A. Mohamed, A. Umar","doi":"10.1177/1847980420987774","DOIUrl":null,"url":null,"abstract":"This study reports the performances of a single structured light-emitting diode (LED) devices based on polymer material poly(9,9-di-n-hexylfluorenyl-2,7-diyl) (PHF) mixed with various concentrations of perovskite oxide strontium titanate (SrTiO3) particles deposited as a composite PHF: SrTiO3 emitting layer. The performances of the single structured organic LED indium tin oxide (ITO)/PHF/aluminum (Al) device and the composite LED ITO/PHF: SrTiO3/Al devices were compared in terms of turn-on voltage and luminance intensity. By incorporating perovskite SrTiO3 particles into PHF emitting layer, the turn-on voltage of the device is significantly reduced from 11.25 V to 1.80 V and the luminance intensity increased from 57.7 cd/m2 to 609 cd/m2. The improvement of turn-on voltage and the electroluminescence spectrum of the composite devices were found to be dependent on the weight ratios of SrTiO3 content in the PHF emitting layer.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1847980420987774","citationCount":"2","resultStr":"{\"title\":\"On the performance of polymer-inorganic perovskite oxide composite light-emitting diodes: The effect of perovskite SrTiO3 additives\",\"authors\":\"U. K. N. Din, M. Salleh, T. Aziz, A. M. Md Zain, M. A. Mohamed, A. Umar\",\"doi\":\"10.1177/1847980420987774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports the performances of a single structured light-emitting diode (LED) devices based on polymer material poly(9,9-di-n-hexylfluorenyl-2,7-diyl) (PHF) mixed with various concentrations of perovskite oxide strontium titanate (SrTiO3) particles deposited as a composite PHF: SrTiO3 emitting layer. The performances of the single structured organic LED indium tin oxide (ITO)/PHF/aluminum (Al) device and the composite LED ITO/PHF: SrTiO3/Al devices were compared in terms of turn-on voltage and luminance intensity. By incorporating perovskite SrTiO3 particles into PHF emitting layer, the turn-on voltage of the device is significantly reduced from 11.25 V to 1.80 V and the luminance intensity increased from 57.7 cd/m2 to 609 cd/m2. The improvement of turn-on voltage and the electroluminescence spectrum of the composite devices were found to be dependent on the weight ratios of SrTiO3 content in the PHF emitting layer.\",\"PeriodicalId\":19018,\"journal\":{\"name\":\"Nanomaterials and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1847980420987774\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1847980420987774\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1847980420987774","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
On the performance of polymer-inorganic perovskite oxide composite light-emitting diodes: The effect of perovskite SrTiO3 additives
This study reports the performances of a single structured light-emitting diode (LED) devices based on polymer material poly(9,9-di-n-hexylfluorenyl-2,7-diyl) (PHF) mixed with various concentrations of perovskite oxide strontium titanate (SrTiO3) particles deposited as a composite PHF: SrTiO3 emitting layer. The performances of the single structured organic LED indium tin oxide (ITO)/PHF/aluminum (Al) device and the composite LED ITO/PHF: SrTiO3/Al devices were compared in terms of turn-on voltage and luminance intensity. By incorporating perovskite SrTiO3 particles into PHF emitting layer, the turn-on voltage of the device is significantly reduced from 11.25 V to 1.80 V and the luminance intensity increased from 57.7 cd/m2 to 609 cd/m2. The improvement of turn-on voltage and the electroluminescence spectrum of the composite devices were found to be dependent on the weight ratios of SrTiO3 content in the PHF emitting layer.
期刊介绍:
Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology