功能空间中的构建块

IF 0.6 3区 数学 Q3 MATHEMATICS
H. Triebel
{"title":"功能空间中的构建块","authors":"H. Triebel","doi":"10.1007/s10476-023-0236-0","DOIUrl":null,"url":null,"abstract":"<div><p>The spaces <i>A</i><span>\n <sup><i>s</i></sup><sub><i>p,q</i></sub>\n \n </span>(ℝ<sup><i>n</i></sup>)with <i>A</i> ∈ {<i>B, F</i>}, <i>s</i> ∈ ℝ and 0 &lt;<i>p,q</i> ≤ ∞ are usually introduced in terms of Fourier-analytical decompositions. Related characterizations based on atoms and wavelets are known nowadays in a rather final way. Quarks atomize the atoms into constructive building blocks. It is the main aim of this survey to raise quarkonial decompositions to the same level as related representations of the spaces <i>A</i><span>\n <sup><i>s</i></sup><sub><i>p,q</i></sub>\n \n </span>(ℝ<sup><i>n</i></sup>) in terms of atoms or wavelets culminating finally in universal frame representations of tempered distributions <i>f</i> ∈ <i>S</i>′(ℝ<sup><i>n</i></sup>).</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Blocks in Function Spaces\",\"authors\":\"H. Triebel\",\"doi\":\"10.1007/s10476-023-0236-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spaces <i>A</i><span>\\n <sup><i>s</i></sup><sub><i>p,q</i></sub>\\n \\n </span>(ℝ<sup><i>n</i></sup>)with <i>A</i> ∈ {<i>B, F</i>}, <i>s</i> ∈ ℝ and 0 &lt;<i>p,q</i> ≤ ∞ are usually introduced in terms of Fourier-analytical decompositions. Related characterizations based on atoms and wavelets are known nowadays in a rather final way. Quarks atomize the atoms into constructive building blocks. It is the main aim of this survey to raise quarkonial decompositions to the same level as related representations of the spaces <i>A</i><span>\\n <sup><i>s</i></sup><sub><i>p,q</i></sub>\\n \\n </span>(ℝ<sup><i>n</i></sup>) in terms of atoms or wavelets culminating finally in universal frame representations of tempered distributions <i>f</i> ∈ <i>S</i>′(ℝ<sup><i>n</i></sup>).</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0236-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0236-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

当A∈{B, F}, s∈∈,且0 <p,q≤∞时,空间A sp,q(∈n)通常用傅里叶解析分解的形式引入。以原子和小波为基础的相关表征,如今已相当彻底地为人所知。夸克使原子原子化,形成有建设性的构件。本研究的主要目的是将夸克分解提升到与空间A sp,q (v n)在原子或小波方面的相关表示相同的水平,最终达到缓和分布f∈S ' (v n)的普遍框架表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building Blocks in Function Spaces

The spaces A sp,q (ℝn)with A ∈ {B, F}, s ∈ ℝ and 0 <p,q ≤ ∞ are usually introduced in terms of Fourier-analytical decompositions. Related characterizations based on atoms and wavelets are known nowadays in a rather final way. Quarks atomize the atoms into constructive building blocks. It is the main aim of this survey to raise quarkonial decompositions to the same level as related representations of the spaces A sp,q (ℝn) in terms of atoms or wavelets culminating finally in universal frame representations of tempered distributions fS′(ℝn).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信