一种新的fracimchet分布的推广:性质与应用

IF 1.6 Q1 STATISTICS & PROBABILITY
Jayakumar Kuttan Pillai, Girish Babu Moolath
{"title":"一种新的fracimchet分布的推广:性质与应用","authors":"Jayakumar Kuttan Pillai, Girish Babu Moolath","doi":"10.6092/ISSN.1973-2201/8462","DOIUrl":null,"url":null,"abstract":"A new generalization of the Frechet distribution is introduced and studied. Its structural properties including the quantile function, random number generation, moments, moment generating function and order statistics are investigated. The unknown parameters of the model are estimated using maximum likelihood estimation method and a simulation study is carried out to check the performance of the method. The new model is applied to a real data set to prove empirically its flexibility.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"79 1","pages":"267-289"},"PeriodicalIF":1.6000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Generalization of the Fréchet Distribution: Properties and Application\",\"authors\":\"Jayakumar Kuttan Pillai, Girish Babu Moolath\",\"doi\":\"10.6092/ISSN.1973-2201/8462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new generalization of the Frechet distribution is introduced and studied. Its structural properties including the quantile function, random number generation, moments, moment generating function and order statistics are investigated. The unknown parameters of the model are estimated using maximum likelihood estimation method and a simulation study is carried out to check the performance of the method. The new model is applied to a real data set to prove empirically its flexibility.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"79 1\",\"pages\":\"267-289\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/8462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/8462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

引入并研究了Frechet分布的一个新的推广。研究了它的结构性质,包括分位数函数、随机数生成、矩、矩生成函数和阶统计量。使用最大似然估计方法对模型的未知参数进行估计,并对该方法的性能进行了仿真研究。将新模型应用于实际数据集,从经验上证明了其灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Generalization of the Fréchet Distribution: Properties and Application
A new generalization of the Frechet distribution is introduced and studied. Its structural properties including the quantile function, random number generation, moments, moment generating function and order statistics are investigated. The unknown parameters of the model are estimated using maximum likelihood estimation method and a simulation study is carried out to check the performance of the method. The new model is applied to a real data set to prove empirically its flexibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信