美国月度GDP的调和估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
G. Koop, Stuart G McIntyre, James Mitchell, Aubrey Poon
{"title":"美国月度GDP的调和估计","authors":"G. Koop, Stuart G McIntyre, James Mitchell, Aubrey Poon","doi":"10.1080/07350015.2022.2044336","DOIUrl":null,"url":null,"abstract":"Abstract In the United States, income and expenditure-side estimates of gross domestic product (GDP) (GDP and GDP ) measure “true” GDP with error and are available at a quarterly frequency. Methods exist for using these proxies to produce reconciled quarterly estimates of true GDP. In this paper, we extend these methods to provide reconciled historical true GDP estimates at a monthly frequency. We do this using a Bayesian mixed frequency vector autoregression (MF-VAR) involving GDP , GDP , unobserved true GDP, and monthly indicators of short-term economic activity. Our MF-VAR imposes restrictions that reflect a measurement-error perspective (i.e., the two GDP proxies are assumed to equal true GDP plus measurement error). Without further restrictions, our model is unidentified. We consider a range of restrictions that allow for point and set identification of true GDP and show that they lead to informative monthly GDP estimates. We illustrate how these new monthly data contribute to our historical understanding of business cycles and we provide a real-time application nowcasting monthly GDP over the pandemic recession.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reconciled Estimates of Monthly GDP in the United States\",\"authors\":\"G. Koop, Stuart G McIntyre, James Mitchell, Aubrey Poon\",\"doi\":\"10.1080/07350015.2022.2044336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the United States, income and expenditure-side estimates of gross domestic product (GDP) (GDP and GDP ) measure “true” GDP with error and are available at a quarterly frequency. Methods exist for using these proxies to produce reconciled quarterly estimates of true GDP. In this paper, we extend these methods to provide reconciled historical true GDP estimates at a monthly frequency. We do this using a Bayesian mixed frequency vector autoregression (MF-VAR) involving GDP , GDP , unobserved true GDP, and monthly indicators of short-term economic activity. Our MF-VAR imposes restrictions that reflect a measurement-error perspective (i.e., the two GDP proxies are assumed to equal true GDP plus measurement error). Without further restrictions, our model is unidentified. We consider a range of restrictions that allow for point and set identification of true GDP and show that they lead to informative monthly GDP estimates. We illustrate how these new monthly data contribute to our historical understanding of business cycles and we provide a real-time application nowcasting monthly GDP over the pandemic recession.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2044336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2044336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5

摘要

摘要在美国,国内生产总值(GDP)的收入和支出方面的估计(GDP和GDP)衡量的是“真实”的GDP,有误差,并按季度提供。现有的方法可以使用这些代理来产生真实GDP的对账季度估计。在本文中,我们扩展了这些方法,以提供每月频率的调和历史真实GDP估计。我们使用贝叶斯混合频率向量自回归(MF-VAR)来实现这一点,该回归涉及GDP、GDP、未观察到的真实GDP和短期经济活动的月度指标。我们的MF-VAR施加了反映测量误差角度的限制(即,假设两个GDP指标等于真实GDP加上测量误差)。如果没有进一步的限制,我们的模型是未知的。我们考虑了一系列限制,这些限制允许对真实GDP进行点集识别,并表明它们可以提供有信息的月度GDP估计。我们展示了这些新的月度数据如何有助于我们对商业周期的历史理解,并提供了一个实时应用程序,实时预测疫情衰退期间的月度GDP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconciled Estimates of Monthly GDP in the United States
Abstract In the United States, income and expenditure-side estimates of gross domestic product (GDP) (GDP and GDP ) measure “true” GDP with error and are available at a quarterly frequency. Methods exist for using these proxies to produce reconciled quarterly estimates of true GDP. In this paper, we extend these methods to provide reconciled historical true GDP estimates at a monthly frequency. We do this using a Bayesian mixed frequency vector autoregression (MF-VAR) involving GDP , GDP , unobserved true GDP, and monthly indicators of short-term economic activity. Our MF-VAR imposes restrictions that reflect a measurement-error perspective (i.e., the two GDP proxies are assumed to equal true GDP plus measurement error). Without further restrictions, our model is unidentified. We consider a range of restrictions that allow for point and set identification of true GDP and show that they lead to informative monthly GDP estimates. We illustrate how these new monthly data contribute to our historical understanding of business cycles and we provide a real-time application nowcasting monthly GDP over the pandemic recession.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信