{"title":"金融分析连结股票市场和宏观经济表现- 2008年金融危机后","authors":"Anjali Bhute","doi":"10.3233/mas-220404","DOIUrl":null,"url":null,"abstract":"Financial analytics has been highly crucial in forecasting possible future economic scenarios. The relationship between a country’s macroeconomic indicators and its stock market has been extensively studied in the literature. Stock prices should be used as leading indications of future economic activity if they accurately reflect the underlying fundamentals. On the contrary, if economic activity follows stock price movement, the outcomes should be the opposite, i.e., economic activity should lead stock price movement. The paper attempts to make use of financial descriptive analytics to explore the interconnection between prominent macroeconomic indicators and stock market activity post ten years of financial crisis 2008. The study’s range is constrained to explore the aforementioned interconnection for the period from September’ 2008 to August’ 2018. The following factors have been found to be related over the long term: GDP, Production Index, Inflation, Exchange Rate, Money Supply, Imports, Exports, FDI, and Stock Market Returns. Shockingly FII has not shown any cointegrating equation. Also causality was observed between stock market and economic indicators. Impulse Response Function (IRF) and Variance Decomposition (VDC) techniques of VAR model are applied to decompose or fractionalize the variability caused by macroeconomic indicators on the BSE Sensex returns which has given some interesting results.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Financial analytics for interlinking stock market and macroeconomic performance- post financial crisis 2008\",\"authors\":\"Anjali Bhute\",\"doi\":\"10.3233/mas-220404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial analytics has been highly crucial in forecasting possible future economic scenarios. The relationship between a country’s macroeconomic indicators and its stock market has been extensively studied in the literature. Stock prices should be used as leading indications of future economic activity if they accurately reflect the underlying fundamentals. On the contrary, if economic activity follows stock price movement, the outcomes should be the opposite, i.e., economic activity should lead stock price movement. The paper attempts to make use of financial descriptive analytics to explore the interconnection between prominent macroeconomic indicators and stock market activity post ten years of financial crisis 2008. The study’s range is constrained to explore the aforementioned interconnection for the period from September’ 2008 to August’ 2018. The following factors have been found to be related over the long term: GDP, Production Index, Inflation, Exchange Rate, Money Supply, Imports, Exports, FDI, and Stock Market Returns. Shockingly FII has not shown any cointegrating equation. Also causality was observed between stock market and economic indicators. Impulse Response Function (IRF) and Variance Decomposition (VDC) techniques of VAR model are applied to decompose or fractionalize the variability caused by macroeconomic indicators on the BSE Sensex returns which has given some interesting results.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-220404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-220404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Financial analytics for interlinking stock market and macroeconomic performance- post financial crisis 2008
Financial analytics has been highly crucial in forecasting possible future economic scenarios. The relationship between a country’s macroeconomic indicators and its stock market has been extensively studied in the literature. Stock prices should be used as leading indications of future economic activity if they accurately reflect the underlying fundamentals. On the contrary, if economic activity follows stock price movement, the outcomes should be the opposite, i.e., economic activity should lead stock price movement. The paper attempts to make use of financial descriptive analytics to explore the interconnection between prominent macroeconomic indicators and stock market activity post ten years of financial crisis 2008. The study’s range is constrained to explore the aforementioned interconnection for the period from September’ 2008 to August’ 2018. The following factors have been found to be related over the long term: GDP, Production Index, Inflation, Exchange Rate, Money Supply, Imports, Exports, FDI, and Stock Market Returns. Shockingly FII has not shown any cointegrating equation. Also causality was observed between stock market and economic indicators. Impulse Response Function (IRF) and Variance Decomposition (VDC) techniques of VAR model are applied to decompose or fractionalize the variability caused by macroeconomic indicators on the BSE Sensex returns which has given some interesting results.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.