V. O. Cárdenas Concha, Luz Sheyla Cárdenas Concha, L. Lodi, Juliana Otavia Bahú, Diana Paola Figueredo hernandez, Willian Amaro Marchioli, Nelson Antonio Moreno Monsalve, Jeffrey Leon Pulido
{"title":"二氧化碳溶剂萃取轻烃的计算机辅助评价","authors":"V. O. Cárdenas Concha, Luz Sheyla Cárdenas Concha, L. Lodi, Juliana Otavia Bahú, Diana Paola Figueredo hernandez, Willian Amaro Marchioli, Nelson Antonio Moreno Monsalve, Jeffrey Leon Pulido","doi":"10.18273/revfue.v21n1-2023003","DOIUrl":null,"url":null,"abstract":"Different process of separation was used in the chemical industry, in particular, extraction is a process used to increase the quality of resins in oil removing impurities like organics solids and heavy metals. Supercritical carbon dioxide offers high selectivity at the end of the extraction process of light hydrocarbons from heavy oils mixture. A simulation technique in Aspen Plus ®software was used to develop the process and sensitivity analysis of the extraction configuration. The simulation of extraction process includes two output streams: the first one, a top stream (unpaved oil), and the second one a bottom stream (asphalt residue). A steady state methodology was implemented for process simulation. The sensitivity analysis was used to assess the influence of variables such as solvent flow rate, temperature and pressure. It was found a significant increase in the flow rate of unpaved oil when the solvent flow rate is increased. Optimal extraction values were selected depending on temperature and pressure effects over the process. An increase in temperature directly enhances the quality of API gravity. In certain occasions, an increase in pressure affects the light oils extraction because of product drag.","PeriodicalId":41949,"journal":{"name":"Fuentes el Reventon Energetico","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPUTER AIDED EVALUATION OF SOLVENT EXTRACTION FOR LIGHT HYDROCARBON USING CARBON DIOXIDE\",\"authors\":\"V. O. Cárdenas Concha, Luz Sheyla Cárdenas Concha, L. Lodi, Juliana Otavia Bahú, Diana Paola Figueredo hernandez, Willian Amaro Marchioli, Nelson Antonio Moreno Monsalve, Jeffrey Leon Pulido\",\"doi\":\"10.18273/revfue.v21n1-2023003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different process of separation was used in the chemical industry, in particular, extraction is a process used to increase the quality of resins in oil removing impurities like organics solids and heavy metals. Supercritical carbon dioxide offers high selectivity at the end of the extraction process of light hydrocarbons from heavy oils mixture. A simulation technique in Aspen Plus ®software was used to develop the process and sensitivity analysis of the extraction configuration. The simulation of extraction process includes two output streams: the first one, a top stream (unpaved oil), and the second one a bottom stream (asphalt residue). A steady state methodology was implemented for process simulation. The sensitivity analysis was used to assess the influence of variables such as solvent flow rate, temperature and pressure. It was found a significant increase in the flow rate of unpaved oil when the solvent flow rate is increased. Optimal extraction values were selected depending on temperature and pressure effects over the process. An increase in temperature directly enhances the quality of API gravity. In certain occasions, an increase in pressure affects the light oils extraction because of product drag.\",\"PeriodicalId\":41949,\"journal\":{\"name\":\"Fuentes el Reventon Energetico\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuentes el Reventon Energetico\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revfue.v21n1-2023003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuentes el Reventon Energetico","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revfue.v21n1-2023003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
COMPUTER AIDED EVALUATION OF SOLVENT EXTRACTION FOR LIGHT HYDROCARBON USING CARBON DIOXIDE
Different process of separation was used in the chemical industry, in particular, extraction is a process used to increase the quality of resins in oil removing impurities like organics solids and heavy metals. Supercritical carbon dioxide offers high selectivity at the end of the extraction process of light hydrocarbons from heavy oils mixture. A simulation technique in Aspen Plus ®software was used to develop the process and sensitivity analysis of the extraction configuration. The simulation of extraction process includes two output streams: the first one, a top stream (unpaved oil), and the second one a bottom stream (asphalt residue). A steady state methodology was implemented for process simulation. The sensitivity analysis was used to assess the influence of variables such as solvent flow rate, temperature and pressure. It was found a significant increase in the flow rate of unpaved oil when the solvent flow rate is increased. Optimal extraction values were selected depending on temperature and pressure effects over the process. An increase in temperature directly enhances the quality of API gravity. In certain occasions, an increase in pressure affects the light oils extraction because of product drag.