T. Carlón-Allende, J. Villanueva‐Díaz, M. Mendoza, D. Pérez-Salicrup
{"title":"墨西哥黑脉金斑蝶生物圈保护区针叶林早期和晚期的气候信号","authors":"T. Carlón-Allende, J. Villanueva‐Díaz, M. Mendoza, D. Pérez-Salicrup","doi":"10.3959/1536-1098-74.1.63","DOIUrl":null,"url":null,"abstract":"Abstract Earlywood (EW) and latewood (LW) chronologies can be used to analyze seasonal climatic variation. We constructed and analyzed total ring (RW), EW, and LW ring growth in Abies religiosa and Pinus pseudostrobus trees from the Monarch Butterfly Biosphere Reserve and evaluated their climatic signal (monthly precipitation and mean average, minimum and maximum temperatures) in the growth of tree rings by correlation and response function analyses. Precipitation during October and December of the previous year and during January, February, April, and May of the year of growth had a positive influence in the growth of both P. pseudostrobus and A. religiosa. Mean maximum temperatures had a negative effect on tree growth in both species. Additionally, growth of A. religiosa was more sensitive to variations of mean, minimum, and maximum temperatures in comparison with P. pseudostrobus, and monthly mean minimum temperature was positively correlated with EW and LW series in A. religiosa. We conclude that EW and LW growth of A. religiosa and P. pseudostrobus might be reduced by lower precipitation during the winter-spring season. Consequently, in the eventuality of warmer and drier climate during the latter season as projected by climate change scenarios, growth rates of A. religiosa could become severely affected, negatively impacting the overwintering habitat of the monarch butterfly (Danaus plexippus L.).","PeriodicalId":54416,"journal":{"name":"Tree-Ring Research","volume":"74 1","pages":"63 - 75"},"PeriodicalIF":1.1000,"publicationDate":"2018-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3959/1536-1098-74.1.63","citationCount":"22","resultStr":"{\"title\":\"Climatic Signal in Earlywood and Latewood in Conifer Forests in the Monarch Butterfly Biosphere Reserve, Mexico\",\"authors\":\"T. Carlón-Allende, J. Villanueva‐Díaz, M. Mendoza, D. Pérez-Salicrup\",\"doi\":\"10.3959/1536-1098-74.1.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Earlywood (EW) and latewood (LW) chronologies can be used to analyze seasonal climatic variation. We constructed and analyzed total ring (RW), EW, and LW ring growth in Abies religiosa and Pinus pseudostrobus trees from the Monarch Butterfly Biosphere Reserve and evaluated their climatic signal (monthly precipitation and mean average, minimum and maximum temperatures) in the growth of tree rings by correlation and response function analyses. Precipitation during October and December of the previous year and during January, February, April, and May of the year of growth had a positive influence in the growth of both P. pseudostrobus and A. religiosa. Mean maximum temperatures had a negative effect on tree growth in both species. Additionally, growth of A. religiosa was more sensitive to variations of mean, minimum, and maximum temperatures in comparison with P. pseudostrobus, and monthly mean minimum temperature was positively correlated with EW and LW series in A. religiosa. We conclude that EW and LW growth of A. religiosa and P. pseudostrobus might be reduced by lower precipitation during the winter-spring season. Consequently, in the eventuality of warmer and drier climate during the latter season as projected by climate change scenarios, growth rates of A. religiosa could become severely affected, negatively impacting the overwintering habitat of the monarch butterfly (Danaus plexippus L.).\",\"PeriodicalId\":54416,\"journal\":{\"name\":\"Tree-Ring Research\",\"volume\":\"74 1\",\"pages\":\"63 - 75\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3959/1536-1098-74.1.63\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree-Ring Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3959/1536-1098-74.1.63\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree-Ring Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3959/1536-1098-74.1.63","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Climatic Signal in Earlywood and Latewood in Conifer Forests in the Monarch Butterfly Biosphere Reserve, Mexico
Abstract Earlywood (EW) and latewood (LW) chronologies can be used to analyze seasonal climatic variation. We constructed and analyzed total ring (RW), EW, and LW ring growth in Abies religiosa and Pinus pseudostrobus trees from the Monarch Butterfly Biosphere Reserve and evaluated their climatic signal (monthly precipitation and mean average, minimum and maximum temperatures) in the growth of tree rings by correlation and response function analyses. Precipitation during October and December of the previous year and during January, February, April, and May of the year of growth had a positive influence in the growth of both P. pseudostrobus and A. religiosa. Mean maximum temperatures had a negative effect on tree growth in both species. Additionally, growth of A. religiosa was more sensitive to variations of mean, minimum, and maximum temperatures in comparison with P. pseudostrobus, and monthly mean minimum temperature was positively correlated with EW and LW series in A. religiosa. We conclude that EW and LW growth of A. religiosa and P. pseudostrobus might be reduced by lower precipitation during the winter-spring season. Consequently, in the eventuality of warmer and drier climate during the latter season as projected by climate change scenarios, growth rates of A. religiosa could become severely affected, negatively impacting the overwintering habitat of the monarch butterfly (Danaus plexippus L.).
期刊介绍:
Tree-Ring Research (TRR) is devoted to papers dealing with the growth rings of trees and the applications of tree-ring research in a wide variety of fields, including but not limited to archaeology, geology, ecology, hydrology, climatology, forestry, and botany. Papers involving research results, new techniques of data acquisition or analysis, and regional or subject-oriented reviews or syntheses are considered for publication.
Scientific papers usually fall into two main categories. Articles should not exceed 5000 words, or approximately 20 double-spaced typewritten pages, including tables, references, and an abstract of 200 words or fewer. All manuscripts submitted as Articles are reviewed by at least two referees. Research Reports, which are usually reviewed by at least one outside referee, should not exceed 1500 words or include more than two figures. Research Reports address technical developments, describe well-documented but preliminary research results, or present findings for which the Article format is not appropriate. Book or monograph Reviews of 500 words or less are also considered. Other categories of papers are occasionally published. All papers are published only in English. Abstracts of the Articles or Reports may be printed in other languages if supplied by the author(s) with English translations.