{"title":"氢气添加对贫预混层流甲烷火焰在应变和热损失联合作用下消耗速度的影响","authors":"Alex M. Garcia, S. Le Bras, W. Polifke","doi":"10.1080/13647830.2023.2182235","DOIUrl":null,"url":null,"abstract":"This study presents a numerical analysis of the impact of hydrogen addition on the consumption speed of premixed lean methane-air laminar flames exposed to combined strain and heat loss. Equivalence ratios of 0.9, 0.7, and 0.5 with fuel mixture composition ranging from pure methane to pure hydrogen are considered to cover a wide range of conditions in the lean region. The 1-D asymmetric counter-flow premixed laminar flame (aCFPF) with heat loss on the product side is considered as a flamelet configuration that represents an elementary unit of a turbulent flame and the consumption speed is used to characterise the effect of strain and heat loss. Due to the ambiguity in the definition of the consumption speed of multi-component mixtures, two definitions are compared. The first definition is based on a weighted combination of the consumption rate of the fuel species and the second one is based in the global heat release rate. The definition of the consumption speed based on the heat release results in lower values of the stretched flame speed and even an opposite response to strain rate for some methane-hydrogen-air mixtures compared to the definition based on the fuel consumption. Strain rate leads to an increase of the flame speed for the lean methane-hydrogen mixtures, reaching a maximum value after which the flame speed decreases with strain rate. Heat loss decreases the stretched flame speed and leads to a sooner extinction of the flamelet due to combined strain and heat loss. Hydrogen addition and equivalence ratio significantly impact the maximum consumption speed and the flame response to combined strain rate and heat loss. The effect of hydrogen on the thermo-diffusive properties of the mixture, characterised by the Zeldovich number and the effective Lewis number, are also analyzed and related to the effect on the consumption speed. Two definitions of the Lewis number of the multi-component fuel mixture are evaluated against the results from the aCFPF.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of hydrogen addition on the consumption speed of lean premixed laminar methane flames exposed to combined strain and heat loss\",\"authors\":\"Alex M. Garcia, S. Le Bras, W. Polifke\",\"doi\":\"10.1080/13647830.2023.2182235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a numerical analysis of the impact of hydrogen addition on the consumption speed of premixed lean methane-air laminar flames exposed to combined strain and heat loss. Equivalence ratios of 0.9, 0.7, and 0.5 with fuel mixture composition ranging from pure methane to pure hydrogen are considered to cover a wide range of conditions in the lean region. The 1-D asymmetric counter-flow premixed laminar flame (aCFPF) with heat loss on the product side is considered as a flamelet configuration that represents an elementary unit of a turbulent flame and the consumption speed is used to characterise the effect of strain and heat loss. Due to the ambiguity in the definition of the consumption speed of multi-component mixtures, two definitions are compared. The first definition is based on a weighted combination of the consumption rate of the fuel species and the second one is based in the global heat release rate. The definition of the consumption speed based on the heat release results in lower values of the stretched flame speed and even an opposite response to strain rate for some methane-hydrogen-air mixtures compared to the definition based on the fuel consumption. Strain rate leads to an increase of the flame speed for the lean methane-hydrogen mixtures, reaching a maximum value after which the flame speed decreases with strain rate. Heat loss decreases the stretched flame speed and leads to a sooner extinction of the flamelet due to combined strain and heat loss. Hydrogen addition and equivalence ratio significantly impact the maximum consumption speed and the flame response to combined strain rate and heat loss. The effect of hydrogen on the thermo-diffusive properties of the mixture, characterised by the Zeldovich number and the effective Lewis number, are also analyzed and related to the effect on the consumption speed. Two definitions of the Lewis number of the multi-component fuel mixture are evaluated against the results from the aCFPF.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2023.2182235\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/13647830.2023.2182235","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of hydrogen addition on the consumption speed of lean premixed laminar methane flames exposed to combined strain and heat loss
This study presents a numerical analysis of the impact of hydrogen addition on the consumption speed of premixed lean methane-air laminar flames exposed to combined strain and heat loss. Equivalence ratios of 0.9, 0.7, and 0.5 with fuel mixture composition ranging from pure methane to pure hydrogen are considered to cover a wide range of conditions in the lean region. The 1-D asymmetric counter-flow premixed laminar flame (aCFPF) with heat loss on the product side is considered as a flamelet configuration that represents an elementary unit of a turbulent flame and the consumption speed is used to characterise the effect of strain and heat loss. Due to the ambiguity in the definition of the consumption speed of multi-component mixtures, two definitions are compared. The first definition is based on a weighted combination of the consumption rate of the fuel species and the second one is based in the global heat release rate. The definition of the consumption speed based on the heat release results in lower values of the stretched flame speed and even an opposite response to strain rate for some methane-hydrogen-air mixtures compared to the definition based on the fuel consumption. Strain rate leads to an increase of the flame speed for the lean methane-hydrogen mixtures, reaching a maximum value after which the flame speed decreases with strain rate. Heat loss decreases the stretched flame speed and leads to a sooner extinction of the flamelet due to combined strain and heat loss. Hydrogen addition and equivalence ratio significantly impact the maximum consumption speed and the flame response to combined strain rate and heat loss. The effect of hydrogen on the thermo-diffusive properties of the mixture, characterised by the Zeldovich number and the effective Lewis number, are also analyzed and related to the effect on the consumption speed. Two definitions of the Lewis number of the multi-component fuel mixture are evaluated against the results from the aCFPF.
期刊介绍:
Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.