非线性单调正映射

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Nagisa, Y. Watatani
{"title":"非线性单调正映射","authors":"M. Nagisa, Y. Watatani","doi":"10.7900/jot.2020aug19.2305","DOIUrl":null,"url":null,"abstract":"e study several classes of general non-linear positive maps between C∗-algebras, which are not necessary completely positive maps. We characterize the class of the compositions of ∗-multiplicative maps and positive linear maps as the class of non-linear maps of boundedly positive type abstractly. We consider three classes of non-linear positive maps defined only on the positive cones, which are the classes of being monotone, supercongruent or concave. Any concave maps are monotone. The intersection of the monotone maps and the supercongruent maps characterizes the class of monotone Borel functional calculus. We give many examples of non-linear positive maps, which show that there exist no other relations among these three classes in general.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-linear monotone positive maps\",\"authors\":\"M. Nagisa, Y. Watatani\",\"doi\":\"10.7900/jot.2020aug19.2305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"e study several classes of general non-linear positive maps between C∗-algebras, which are not necessary completely positive maps. We characterize the class of the compositions of ∗-multiplicative maps and positive linear maps as the class of non-linear maps of boundedly positive type abstractly. We consider three classes of non-linear positive maps defined only on the positive cones, which are the classes of being monotone, supercongruent or concave. Any concave maps are monotone. The intersection of the monotone maps and the supercongruent maps characterizes the class of monotone Borel functional calculus. We give many examples of non-linear positive maps, which show that there exist no other relations among these three classes in general.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020aug19.2305\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020aug19.2305","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了C * -代数之间的几种一般非线性正映射,它们不一定是完全正映射。我们抽象地将* -乘法映射与正线性映射的组合类刻画为有界正型非线性映射。我们考虑了只定义在正锥上的三类非线性正映射,它们是单调的、超同的和凹的。任何凹映射都是单调的。单调映射与超同余映射的交点是单调Borel泛函微积分类的一个特征。我们给出了许多非线性正映射的例子,这些例子表明这三类之间一般不存在其他关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear monotone positive maps
e study several classes of general non-linear positive maps between C∗-algebras, which are not necessary completely positive maps. We characterize the class of the compositions of ∗-multiplicative maps and positive linear maps as the class of non-linear maps of boundedly positive type abstractly. We consider three classes of non-linear positive maps defined only on the positive cones, which are the classes of being monotone, supercongruent or concave. Any concave maps are monotone. The intersection of the monotone maps and the supercongruent maps characterizes the class of monotone Borel functional calculus. We give many examples of non-linear positive maps, which show that there exist no other relations among these three classes in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信