基于有限元和稀疏多项式混沌展开的声表面波气体传感器不确定度传播和全局灵敏度分析

IF 1.9 Q3 ENGINEERING, MECHANICAL
Vibration Pub Date : 2023-08-01 DOI:10.3390/vibration6030038
M. Hamdaoui
{"title":"基于有限元和稀疏多项式混沌展开的声表面波气体传感器不确定度传播和全局灵敏度分析","authors":"M. Hamdaoui","doi":"10.3390/vibration6030038","DOIUrl":null,"url":null,"abstract":"The aim of this work is to perform an uncertainty propagation and global sensitivity analysis of a surface acoustic wave (SAW) gas sensor using finite elements and sparse polynomial chaos. The SAW gas sensor is modeled using finite elements (FEM) under COMSOL, and the sensitivity to DCM of its Sezawa mode is considered to be the quantity of interest. The importance of several geometrical (width and PIB thickness), material (PIB Young’s modulus and density), and ambient (pressure, temperature, and concentration) parameters on the sensor’s sensitivity is figured out by means of Sobol’ indices using sparse polynomial chaos expansions. It is shown that when the variability of the input parameters is low (inferior to 5%), the only impacting parameter is the cell width. However, when the variability of the input parameters reaches medium levels (around 10%), all the input parameters except the ambient temperature are impacting the sensor’s sensitivity. It is also reported that in the medium variability case, the sensor’s sensitivity experiences high variations that can lead to a degradation of its performances.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty Propagation and Global Sensitivity Analysis of a Surface Acoustic Wave Gas Sensor Using Finite Elements and Sparse Polynomial Chaos Expansions\",\"authors\":\"M. Hamdaoui\",\"doi\":\"10.3390/vibration6030038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to perform an uncertainty propagation and global sensitivity analysis of a surface acoustic wave (SAW) gas sensor using finite elements and sparse polynomial chaos. The SAW gas sensor is modeled using finite elements (FEM) under COMSOL, and the sensitivity to DCM of its Sezawa mode is considered to be the quantity of interest. The importance of several geometrical (width and PIB thickness), material (PIB Young’s modulus and density), and ambient (pressure, temperature, and concentration) parameters on the sensor’s sensitivity is figured out by means of Sobol’ indices using sparse polynomial chaos expansions. It is shown that when the variability of the input parameters is low (inferior to 5%), the only impacting parameter is the cell width. However, when the variability of the input parameters reaches medium levels (around 10%), all the input parameters except the ambient temperature are impacting the sensor’s sensitivity. It is also reported that in the medium variability case, the sensor’s sensitivity experiences high variations that can lead to a degradation of its performances.\",\"PeriodicalId\":75301,\"journal\":{\"name\":\"Vibration\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vibration6030038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6030038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目的是使用有限元和稀疏多项式混沌对声表面波(SAW)气体传感器进行不确定性传播和全局灵敏度分析。SAW气体传感器在COMSOL下使用有限元(FEM)建模,其Sezawa模式对DCM的灵敏度被认为是感兴趣的量。几个几何参数(宽度和PIB厚度)、材料(PIB杨氏模量和密度)和环境参数(压力、温度和浓度)对传感器灵敏度的重要性是通过使用稀疏多项式混沌展开的Sobol指数来计算的。结果表明,当输入参数的可变性较低(低于5%)时,唯一的影响参数是单元宽度。然而,当输入参数的可变性达到中等水平(约10%)时,除环境温度外的所有输入参数都会影响传感器的灵敏度。另据报道,在中等可变性的情况下,传感器的灵敏度会经历高变化,这可能导致其性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty Propagation and Global Sensitivity Analysis of a Surface Acoustic Wave Gas Sensor Using Finite Elements and Sparse Polynomial Chaos Expansions
The aim of this work is to perform an uncertainty propagation and global sensitivity analysis of a surface acoustic wave (SAW) gas sensor using finite elements and sparse polynomial chaos. The SAW gas sensor is modeled using finite elements (FEM) under COMSOL, and the sensitivity to DCM of its Sezawa mode is considered to be the quantity of interest. The importance of several geometrical (width and PIB thickness), material (PIB Young’s modulus and density), and ambient (pressure, temperature, and concentration) parameters on the sensor’s sensitivity is figured out by means of Sobol’ indices using sparse polynomial chaos expansions. It is shown that when the variability of the input parameters is low (inferior to 5%), the only impacting parameter is the cell width. However, when the variability of the input parameters reaches medium levels (around 10%), all the input parameters except the ambient temperature are impacting the sensor’s sensitivity. It is also reported that in the medium variability case, the sensor’s sensitivity experiences high variations that can lead to a degradation of its performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信