纳米氧化锆对超级电容器隔膜PVDF/PAN膜形貌和力学性能的影响

Q3 Engineering
W. Lina, Lou Huiqing, L. Wentao, Zong Dingding
{"title":"纳米氧化锆对超级电容器隔膜PVDF/PAN膜形貌和力学性能的影响","authors":"W. Lina, Lou Huiqing, L. Wentao, Zong Dingding","doi":"10.1504/IJNM.2019.10018338","DOIUrl":null,"url":null,"abstract":"The PVDF/PAN/ZrO2 (zirconia) composite fibrous membranes were fabricated by electrospinning. The effects of ZrO2 content on solution properties, mechanical properties and crystallisation behaviours as well as related morphology were systematically evaluated. The scanning electron microscopy (SEM) was used to investigate the effect of ZrO2 content on the morphology of PVDF/PAN/ZrO2 composite fibrous membranes, which showed that the diameter is only 0.8 μm when the ZrO2 is 0.4%. It could be attributed to the enhancement of solution conductivity by ZrO2 addition. Nitrogen adsorption based on Brunauer-Emmett-Teller (BET) principle was employed to measure the specific surface area, which indicated that the specific surface area increased about 1.8 times for composite membranes compared to the PVDF/PAN membrane when the ZrO2 content was 0.4%. The tensile strength of fibrous membranes increased from 2.74 of pure PVDF/PAN to 5.11 MPa of PVDF/PAN/ZrO2 when the ZrO2 content was 0.4%. The differential scanning calorimetry (DSC) results showed that the crystallinity and orientation enhanced with increasing of ZrO2, which was beneficial to improve the tensile strength. The Tg and Tc shifted to high temperature with ZrO2 increases, which demonstrated that ZrO2 promoted the heterogeneous nucleation and formed perfect crystal structure.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of nano-zirconia on the morphology and mechanical properties of PVDF/PAN membrane as separators in super capacitors\",\"authors\":\"W. Lina, Lou Huiqing, L. Wentao, Zong Dingding\",\"doi\":\"10.1504/IJNM.2019.10018338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The PVDF/PAN/ZrO2 (zirconia) composite fibrous membranes were fabricated by electrospinning. The effects of ZrO2 content on solution properties, mechanical properties and crystallisation behaviours as well as related morphology were systematically evaluated. The scanning electron microscopy (SEM) was used to investigate the effect of ZrO2 content on the morphology of PVDF/PAN/ZrO2 composite fibrous membranes, which showed that the diameter is only 0.8 μm when the ZrO2 is 0.4%. It could be attributed to the enhancement of solution conductivity by ZrO2 addition. Nitrogen adsorption based on Brunauer-Emmett-Teller (BET) principle was employed to measure the specific surface area, which indicated that the specific surface area increased about 1.8 times for composite membranes compared to the PVDF/PAN membrane when the ZrO2 content was 0.4%. The tensile strength of fibrous membranes increased from 2.74 of pure PVDF/PAN to 5.11 MPa of PVDF/PAN/ZrO2 when the ZrO2 content was 0.4%. The differential scanning calorimetry (DSC) results showed that the crystallinity and orientation enhanced with increasing of ZrO2, which was beneficial to improve the tensile strength. The Tg and Tc shifted to high temperature with ZrO2 increases, which demonstrated that ZrO2 promoted the heterogeneous nucleation and formed perfect crystal structure.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2019.10018338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2019.10018338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

采用静电纺丝法制备了PVDF/PAN/ZrO2(氧化锆)复合纤维膜。系统评价了ZrO2含量对溶液性能、力学性能、结晶行为以及相关形貌的影响。利用扫描电子显微镜(SEM)研究了ZrO2含量对PVDF/PAN/ZrO2复合纤维膜形貌的影响,结果表明,当ZrO2含量为0.4%时,PVDF/PAN-ZrO2复合膜的直径仅为0.8μm。采用基于Brunauer-Emmett-Teller(BET)原理的氮吸附来测量比表面积,结果表明,当ZrO2含量为0.4%时,复合膜的比表面积比PVDF/PAN膜增加了约1.8倍。纤维膜的拉伸强度从纯PVDF/PAN的2.74提高到ZrO2含量0.4%时的5.11MPa。差示扫描量热法(DSC)结果表明随着ZrO2的增加,取向增强,有利于提高拉伸强度。随着ZrO2的增加,Tg和Tc向高温移动,表明ZrO2促进了非均匀成核,形成了完美的晶体结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of nano-zirconia on the morphology and mechanical properties of PVDF/PAN membrane as separators in super capacitors
The PVDF/PAN/ZrO2 (zirconia) composite fibrous membranes were fabricated by electrospinning. The effects of ZrO2 content on solution properties, mechanical properties and crystallisation behaviours as well as related morphology were systematically evaluated. The scanning electron microscopy (SEM) was used to investigate the effect of ZrO2 content on the morphology of PVDF/PAN/ZrO2 composite fibrous membranes, which showed that the diameter is only 0.8 μm when the ZrO2 is 0.4%. It could be attributed to the enhancement of solution conductivity by ZrO2 addition. Nitrogen adsorption based on Brunauer-Emmett-Teller (BET) principle was employed to measure the specific surface area, which indicated that the specific surface area increased about 1.8 times for composite membranes compared to the PVDF/PAN membrane when the ZrO2 content was 0.4%. The tensile strength of fibrous membranes increased from 2.74 of pure PVDF/PAN to 5.11 MPa of PVDF/PAN/ZrO2 when the ZrO2 content was 0.4%. The differential scanning calorimetry (DSC) results showed that the crystallinity and orientation enhanced with increasing of ZrO2, which was beneficial to improve the tensile strength. The Tg and Tc shifted to high temperature with ZrO2 increases, which demonstrated that ZrO2 promoted the heterogeneous nucleation and formed perfect crystal structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信