Weiwen Feng, Peng Li, Haozhi Zhang, Ke Sun, Wei Li, Xinxin Li
{"title":"超薄硅和聚合物异质集成柔性压力/温度传感器","authors":"Weiwen Feng, Peng Li, Haozhi Zhang, Ke Sun, Wei Li, Xinxin Li","doi":"10.1088/1361-6439/acee8b","DOIUrl":null,"url":null,"abstract":"Flexible pressure sensors and temperature sensors are widely used in various fields because of their advantages in high flexibility, good shape retention and extremely small thickness. However, it is quite challenging to fabricate ultra-thin flexible pressure sensors with reliable sensing performance. In this work, we propose a new type of silicon–polymer heterogeneously integrated MEMS flexible sensor with an ultra-thin silicon-based absolute pressure sensing element and a thermistor. In the study, a flexible MEMS fabrication process is developed, which enables simultaneous fabrication in two different substrates and self-release of the thin and slim flexible sensor. The front-end section of the flexible sensor is with the width as 125 μm, length as 3.2 cm and total thickness as 12 μm, where the integrated silicon substrate thickness is only 3 μm. The sensor takes a slender shape to allow for medical invasive measurement by inserting it into a slim medical catheter or a syringe needle-tube. The sensitivity of the fabricated ultra-thin absolute pressure sensor is tested as 45.2 μV kPa−1 under 3.3 V supplied voltage, with the nonlinearity as only ±0.16% FS. The sensitivity of the thermistor is 10.4 Ω °C−1 in the range of 0 °C–100 °C. Moreover, the polysilicon thermistor can also serve as a micro-heater, where an electric heating power of 107 μW results in a temperature increase of 13.5 °C. With ultra-thin slim structure and satisfactory performance, the MEMS flexible sensor is promising in various fields like biomedical applications.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible pressure/temperature sensors with heterogeneous integration of ultra-thin silicon and polymer\",\"authors\":\"Weiwen Feng, Peng Li, Haozhi Zhang, Ke Sun, Wei Li, Xinxin Li\",\"doi\":\"10.1088/1361-6439/acee8b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible pressure sensors and temperature sensors are widely used in various fields because of their advantages in high flexibility, good shape retention and extremely small thickness. However, it is quite challenging to fabricate ultra-thin flexible pressure sensors with reliable sensing performance. In this work, we propose a new type of silicon–polymer heterogeneously integrated MEMS flexible sensor with an ultra-thin silicon-based absolute pressure sensing element and a thermistor. In the study, a flexible MEMS fabrication process is developed, which enables simultaneous fabrication in two different substrates and self-release of the thin and slim flexible sensor. The front-end section of the flexible sensor is with the width as 125 μm, length as 3.2 cm and total thickness as 12 μm, where the integrated silicon substrate thickness is only 3 μm. The sensor takes a slender shape to allow for medical invasive measurement by inserting it into a slim medical catheter or a syringe needle-tube. The sensitivity of the fabricated ultra-thin absolute pressure sensor is tested as 45.2 μV kPa−1 under 3.3 V supplied voltage, with the nonlinearity as only ±0.16% FS. The sensitivity of the thermistor is 10.4 Ω °C−1 in the range of 0 °C–100 °C. Moreover, the polysilicon thermistor can also serve as a micro-heater, where an electric heating power of 107 μW results in a temperature increase of 13.5 °C. With ultra-thin slim structure and satisfactory performance, the MEMS flexible sensor is promising in various fields like biomedical applications.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/acee8b\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acee8b","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Flexible pressure/temperature sensors with heterogeneous integration of ultra-thin silicon and polymer
Flexible pressure sensors and temperature sensors are widely used in various fields because of their advantages in high flexibility, good shape retention and extremely small thickness. However, it is quite challenging to fabricate ultra-thin flexible pressure sensors with reliable sensing performance. In this work, we propose a new type of silicon–polymer heterogeneously integrated MEMS flexible sensor with an ultra-thin silicon-based absolute pressure sensing element and a thermistor. In the study, a flexible MEMS fabrication process is developed, which enables simultaneous fabrication in two different substrates and self-release of the thin and slim flexible sensor. The front-end section of the flexible sensor is with the width as 125 μm, length as 3.2 cm and total thickness as 12 μm, where the integrated silicon substrate thickness is only 3 μm. The sensor takes a slender shape to allow for medical invasive measurement by inserting it into a slim medical catheter or a syringe needle-tube. The sensitivity of the fabricated ultra-thin absolute pressure sensor is tested as 45.2 μV kPa−1 under 3.3 V supplied voltage, with the nonlinearity as only ±0.16% FS. The sensitivity of the thermistor is 10.4 Ω °C−1 in the range of 0 °C–100 °C. Moreover, the polysilicon thermistor can also serve as a micro-heater, where an electric heating power of 107 μW results in a temperature increase of 13.5 °C. With ultra-thin slim structure and satisfactory performance, the MEMS flexible sensor is promising in various fields like biomedical applications.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.