集成好氧介质过滤器厌氧折流板反应器处理城市污水的性能提升评价

Mohammad Aghanaghad, G. Mousavi
{"title":"集成好氧介质过滤器厌氧折流板反应器处理城市污水的性能提升评价","authors":"Mohammad Aghanaghad, G. Mousavi","doi":"10.32598/ahs.11.2.350.1","DOIUrl":null,"url":null,"abstract":"Background & Aims of the Study: Anaerobic baffled reactor (ABR) is one of the low-cost wastewater treatment systems; however, it has some limitations, such as insufficient standard nutrient outflow. Accordingly, it should be studied and developed. This research aims to determine the efficiency of a five-sectional reactor pilot and to upgrade it with an integrated aerated media filter in the reactor (integrated reactor) for municipal wastewater treatment. Materials and Methods: This study was performed on a laboratory scale with field conditions in the Khoy City wastewater treatment plant. The ABR reactor operated for 270 days with a hydraulic retention time (HRT) of 48, 36, 24, and 18 hours, respectively. The Integrated anaerobic baffled reactor (IABR) was operated for 35 days with 24 hours of HRT, i.e., aeration time of 5 hours. The reactors were fed in line from the inflowing wastewater to the treatment plant. A 24-hour combined sampling was performed 224 times from the inflow and outflow of the system, and volatile suspended solids, total kjeldahl nitrogen (TKN), total phosphorus (TP), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and Total Suspended Solids (TSS) parameters were measured and compared with the effluent disposal standard. Results: The launch of ABR lasted 105 days, and its helpful operation lasted 200 days. In 18 to 48 hours, the reactor removed 79% to 91% of COD, 9% to 20% of TKN, 19% to 30% of phosphorus, and 89% to 94% of TSS. The IABR reached the effluent disposal standard in terms of TSS, BOD, COD, and phosphorus under 24 hours HRT, i.e., aeration time of 5 hours, and increased the COD removal efficiency by 6% compared to ABR under 24 hours HRT and the same conditions. Conclusion: By integrating the final aerobic media filter in ABR while reducing the required HRT by 50%, its efficiency in achieving the effluent disposal standards increased compared to ABR. Therefore, this system can be used to treat municipal wastewater.","PeriodicalId":8299,"journal":{"name":"Archives of Hygiene Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Upgrading Evaluation of the Anaerobic Baffled Reactor by Integrating Aerobic Media Filter for Municipal Wastewater Treatment\",\"authors\":\"Mohammad Aghanaghad, G. Mousavi\",\"doi\":\"10.32598/ahs.11.2.350.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background & Aims of the Study: Anaerobic baffled reactor (ABR) is one of the low-cost wastewater treatment systems; however, it has some limitations, such as insufficient standard nutrient outflow. Accordingly, it should be studied and developed. This research aims to determine the efficiency of a five-sectional reactor pilot and to upgrade it with an integrated aerated media filter in the reactor (integrated reactor) for municipal wastewater treatment. Materials and Methods: This study was performed on a laboratory scale with field conditions in the Khoy City wastewater treatment plant. The ABR reactor operated for 270 days with a hydraulic retention time (HRT) of 48, 36, 24, and 18 hours, respectively. The Integrated anaerobic baffled reactor (IABR) was operated for 35 days with 24 hours of HRT, i.e., aeration time of 5 hours. The reactors were fed in line from the inflowing wastewater to the treatment plant. A 24-hour combined sampling was performed 224 times from the inflow and outflow of the system, and volatile suspended solids, total kjeldahl nitrogen (TKN), total phosphorus (TP), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and Total Suspended Solids (TSS) parameters were measured and compared with the effluent disposal standard. Results: The launch of ABR lasted 105 days, and its helpful operation lasted 200 days. In 18 to 48 hours, the reactor removed 79% to 91% of COD, 9% to 20% of TKN, 19% to 30% of phosphorus, and 89% to 94% of TSS. The IABR reached the effluent disposal standard in terms of TSS, BOD, COD, and phosphorus under 24 hours HRT, i.e., aeration time of 5 hours, and increased the COD removal efficiency by 6% compared to ABR under 24 hours HRT and the same conditions. Conclusion: By integrating the final aerobic media filter in ABR while reducing the required HRT by 50%, its efficiency in achieving the effluent disposal standards increased compared to ABR. Therefore, this system can be used to treat municipal wastewater.\",\"PeriodicalId\":8299,\"journal\":{\"name\":\"Archives of Hygiene Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Hygiene Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32598/ahs.11.2.350.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hygiene Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/ahs.11.2.350.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究背景与目的:厌氧折流板反应器(ABR)是一种低成本的污水处理系统;但也存在一定的局限性,如标准的养分流出量不够。因此,它应该被研究和发展。本研究旨在确定五段反应器中试的效率,并在反应器(集成反应器)中使用集成曝气介质过滤器对其进行升级,以处理城市污水。材料和方法:本研究在Khoy市污水处理厂的实验室规模和现场条件下进行。ABR反应器运行270天,水力滞留时间(HRT)分别为48、36、24和18小时。综合厌氧折流板反应器(IABR)运行35天,HRT为24小时,曝气时间为5小时。反应器从流入的废水到处理厂呈直线输送。在24小时内对系统进出水量进行了224次联合采样,测量了挥发性悬浮物、总凯氏定氮(TKN)、总磷(TP)、生化需氧量(BOD)、化学需氧量(COD)和总悬浮物(TSS)参数,并与出水处理标准进行了比较。结果:ABR启动持续105 d,辅助操作持续200 d。在18 ~ 48小时内,反应器去除COD为79% ~ 91%,TKN为9% ~ 20%,磷为19% ~ 30%,TSS为89% ~ 94%。IABR在24 h曝气时间即曝气时间为5 h时,TSS、BOD、COD、磷均达到出水处理标准,与同等条件下24 h的ABR相比,COD去除率提高6%。结论:通过在ABR中集成最终好氧培养基过滤器,同时将所需HRT降低50%,其达到出水处理标准的效率比ABR提高。因此,该系统可用于处理城市污水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Upgrading Evaluation of the Anaerobic Baffled Reactor by Integrating Aerobic Media Filter for Municipal Wastewater Treatment
Background & Aims of the Study: Anaerobic baffled reactor (ABR) is one of the low-cost wastewater treatment systems; however, it has some limitations, such as insufficient standard nutrient outflow. Accordingly, it should be studied and developed. This research aims to determine the efficiency of a five-sectional reactor pilot and to upgrade it with an integrated aerated media filter in the reactor (integrated reactor) for municipal wastewater treatment. Materials and Methods: This study was performed on a laboratory scale with field conditions in the Khoy City wastewater treatment plant. The ABR reactor operated for 270 days with a hydraulic retention time (HRT) of 48, 36, 24, and 18 hours, respectively. The Integrated anaerobic baffled reactor (IABR) was operated for 35 days with 24 hours of HRT, i.e., aeration time of 5 hours. The reactors were fed in line from the inflowing wastewater to the treatment plant. A 24-hour combined sampling was performed 224 times from the inflow and outflow of the system, and volatile suspended solids, total kjeldahl nitrogen (TKN), total phosphorus (TP), biochemical oxygen demand (BOD), chemical oxygen demand (COD), and Total Suspended Solids (TSS) parameters were measured and compared with the effluent disposal standard. Results: The launch of ABR lasted 105 days, and its helpful operation lasted 200 days. In 18 to 48 hours, the reactor removed 79% to 91% of COD, 9% to 20% of TKN, 19% to 30% of phosphorus, and 89% to 94% of TSS. The IABR reached the effluent disposal standard in terms of TSS, BOD, COD, and phosphorus under 24 hours HRT, i.e., aeration time of 5 hours, and increased the COD removal efficiency by 6% compared to ABR under 24 hours HRT and the same conditions. Conclusion: By integrating the final aerobic media filter in ABR while reducing the required HRT by 50%, its efficiency in achieving the effluent disposal standards increased compared to ABR. Therefore, this system can be used to treat municipal wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信