{"title":"复多项式旋转定理的几个注释","authors":"V. Dubinin","doi":"10.33048/semi.2021.18.026","DOIUrl":null,"url":null,"abstract":"For any complex polynomial P (z) = c0+c1z+...+cnz , cn 6= 0, having all its zeros in the unit disk |z| ≤ 1, we consider the behavior of the function (argP (e))θ when the real argument θ changes. We give some sharp estimates of this function involving of the values of P (e), argP (e) or the coefficients ck, k = 0, 1, n − 1, n.","PeriodicalId":45858,"journal":{"name":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some remarks on rotation theorems for complex polynomials\",\"authors\":\"V. Dubinin\",\"doi\":\"10.33048/semi.2021.18.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any complex polynomial P (z) = c0+c1z+...+cnz , cn 6= 0, having all its zeros in the unit disk |z| ≤ 1, we consider the behavior of the function (argP (e))θ when the real argument θ changes. We give some sharp estimates of this function involving of the values of P (e), argP (e) or the coefficients ck, k = 0, 1, n − 1, n.\",\"PeriodicalId\":45858,\"journal\":{\"name\":\"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33048/semi.2021.18.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/semi.2021.18.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于任意复数多项式P (z) = c0+c1z+…+cnz, cn 6= 0,其所有零点都在单位盘|z|≤1,我们考虑函数(argP (e))θ在实参数θ变化时的行为。我们给出了关于P (e), argP (e)或系数ck, k = 0,1, n - 1, n的函数的一些尖锐估计。
Some remarks on rotation theorems for complex polynomials
For any complex polynomial P (z) = c0+c1z+...+cnz , cn 6= 0, having all its zeros in the unit disk |z| ≤ 1, we consider the behavior of the function (argP (e))θ when the real argument θ changes. We give some sharp estimates of this function involving of the values of P (e), argP (e) or the coefficients ck, k = 0, 1, n − 1, n.