{"title":"涉及变阶分数阶拉普拉斯指数和临界指数的kirchhoff型问题的变符号解","authors":"Sihua Liang, Giovanni Molica Bisci, Binlin Zhang","doi":"10.15388/namc.2022.27.26575","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the Kirchhoff-type variable-order fractional Laplacian problem with critical variable exponent. By using constraint variational method and quantitative deformation lemma we show the existence of one least energy solution, which is strictly larger than twice of that of any ground state solution.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sign-changing solutions for Kirchhoff-type problems involving variable-order fractional Laplacian and critical exponents\",\"authors\":\"Sihua Liang, Giovanni Molica Bisci, Binlin Zhang\",\"doi\":\"10.15388/namc.2022.27.26575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the Kirchhoff-type variable-order fractional Laplacian problem with critical variable exponent. By using constraint variational method and quantitative deformation lemma we show the existence of one least energy solution, which is strictly larger than twice of that of any ground state solution.\",\"PeriodicalId\":49286,\"journal\":{\"name\":\"Nonlinear Analysis-Modelling and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Modelling and Control\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15388/namc.2022.27.26575\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15388/namc.2022.27.26575","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sign-changing solutions for Kirchhoff-type problems involving variable-order fractional Laplacian and critical exponents
In this paper, we are concerned with the Kirchhoff-type variable-order fractional Laplacian problem with critical variable exponent. By using constraint variational method and quantitative deformation lemma we show the existence of one least energy solution, which is strictly larger than twice of that of any ground state solution.
期刊介绍:
The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology.
The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.