{"title":"弱耗散广义周期Camassa-Holm方程的破波和整体存在性","authors":"Ying Zhang, Congming Peng","doi":"10.1155/2022/6955014","DOIUrl":null,"url":null,"abstract":"In this paper, a family of the weakly dissipative periodic Camassa-Holm type equation cubic and quartic nonlinearities is considered. The precise blow-up scenarios of strong solutions and several conditions on the initial data to guarantee blow-up of the induced solutions are described in detail. Finally, we establish a sufficient condition for global solutions.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave Breaking and Global Existence for the Generalized Periodic Camassa-Holm Equation with the Weak Dissipation\",\"authors\":\"Ying Zhang, Congming Peng\",\"doi\":\"10.1155/2022/6955014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a family of the weakly dissipative periodic Camassa-Holm type equation cubic and quartic nonlinearities is considered. The precise blow-up scenarios of strong solutions and several conditions on the initial data to guarantee blow-up of the induced solutions are described in detail. Finally, we establish a sufficient condition for global solutions.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/6955014\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/6955014","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Wave Breaking and Global Existence for the Generalized Periodic Camassa-Holm Equation with the Weak Dissipation
In this paper, a family of the weakly dissipative periodic Camassa-Holm type equation cubic and quartic nonlinearities is considered. The precise blow-up scenarios of strong solutions and several conditions on the initial data to guarantee blow-up of the induced solutions are described in detail. Finally, we establish a sufficient condition for global solutions.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.