自由Rota-Baxter族代数和自由(三)树形族代数

Pub Date : 2023-02-09 DOI:10.1007/s10468-022-10198-3
Yuanyuan Zhang, Xing Gao, Dominique Manchon
{"title":"自由Rota-Baxter族代数和自由(三)树形族代数","authors":"Yuanyuan Zhang,&nbsp;Xing Gao,&nbsp;Dominique Manchon","doi":"10.1007/s10468-022-10198-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first construct the free Rota-Baxter family algebra generated by some set <i>X</i> in terms of typed angularly <i>X</i>-decorated planar rooted trees. As an application, we obtain a new construction of the free Rota-Baxter algebra only in terms of angularly decorated planar rooted trees (not forests), which is quite different from the known construction via angularly decorated planar rooted forests by K. Ebrahimi-Fard and L. Guo. We then embed the free dendriform (resp. tridendriform) family algebra into the free Rota-Baxter family algebra of weight zero (resp. one). Finally, we prove that the free Rota-Baxter family algebra is the universal enveloping algebra of the free (tri)dendriform family algebra.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free Rota-Baxter Family Algebras and Free (tri)dendriform Family Algebras\",\"authors\":\"Yuanyuan Zhang,&nbsp;Xing Gao,&nbsp;Dominique Manchon\",\"doi\":\"10.1007/s10468-022-10198-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first construct the free Rota-Baxter family algebra generated by some set <i>X</i> in terms of typed angularly <i>X</i>-decorated planar rooted trees. As an application, we obtain a new construction of the free Rota-Baxter algebra only in terms of angularly decorated planar rooted trees (not forests), which is quite different from the known construction via angularly decorated planar rooted forests by K. Ebrahimi-Fard and L. Guo. We then embed the free dendriform (resp. tridendriform) family algebra into the free Rota-Baxter family algebra of weight zero (resp. one). Finally, we prove that the free Rota-Baxter family algebra is the universal enveloping algebra of the free (tri)dendriform family algebra.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-022-10198-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-022-10198-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先用类型化的角X装饰平面有根树来构造由某个集合X生成的自由罗塔-巴克斯特族代数。作为一个应用,我们只用角装饰平面有根树(而不是森林)就得到了自由罗塔-巴克斯特代数的新构造,这与 K. Ebrahimi-Fard 和 L. Guo 通过角装饰平面有根林的已知构造截然不同。然后,我们将自由树枝状(或三树枝状)族代数嵌入权重为零(或一)的自由罗塔-巴克斯特族代数中。最后,我们证明自由 Rota-Baxter 族代数是自由(三)树枝状族代数的普遍包络代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Free Rota-Baxter Family Algebras and Free (tri)dendriform Family Algebras

In this paper, we first construct the free Rota-Baxter family algebra generated by some set X in terms of typed angularly X-decorated planar rooted trees. As an application, we obtain a new construction of the free Rota-Baxter algebra only in terms of angularly decorated planar rooted trees (not forests), which is quite different from the known construction via angularly decorated planar rooted forests by K. Ebrahimi-Fard and L. Guo. We then embed the free dendriform (resp. tridendriform) family algebra into the free Rota-Baxter family algebra of weight zero (resp. one). Finally, we prove that the free Rota-Baxter family algebra is the universal enveloping algebra of the free (tri)dendriform family algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信