{"title":"编辑:化工过程工业的整合与优化","authors":"D. Flórez-Orrego, Shivom Sharma, S. Navabi","doi":"10.3389/fceng.2022.961022","DOIUrl":null,"url":null,"abstract":"Process integration and optimization are important areas within process system engineering. It identifies targets and utilizes synergies in the overall production process, and minimizes the consumption of energy, raw materials, and natural resources, while reducing waste production and adverse environmental impacts. Process optimization is used to improve the design and operation of the entire plants or the standalone chemical processes, by maximizing the process performance and minimizing the production cost, using mathematical and computational techniques. Academicians and researchers have developed advanced process integration and optimization techniques, and applied them on a wide range of industrial chemical and related processes. In those applications, the consumption of raw materials, natural resources and the production of wastes should be minimized by designing sustainable processes, and determining the best operating conditions that minimize the environmental impact, investment and operating costs, and exergy destruction (Domingos et al., 2022). Heuristics, thermodynamics and algorithmic approaches have been widely applied in process design and synthesis, although they are not exempt of drawbacks. The first two approaches do not guarantee that the optimum solution is obtained, as they do not use a systematic framework for synthetizing and integrating chemical plants, heat recovery networks and utility systems (Grossmann, 1985). Meanwhile, the algorithmic approach requires major computational effort and depends on the initial process superstructure. Thus, heuristics could be used in a preliminary screening to eliminate some alternatives or generate good estimates, whereas thermodynamic approaches could be used to develop bounds or eliminate energy inefficient alternatives. In turn, the algorithmic approaches could be useful to automatically generate integrated and optimized process flowsheets. In OPEN ACCESS","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Editorial: Integration and optimization in the chemical process industry\",\"authors\":\"D. Flórez-Orrego, Shivom Sharma, S. Navabi\",\"doi\":\"10.3389/fceng.2022.961022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process integration and optimization are important areas within process system engineering. It identifies targets and utilizes synergies in the overall production process, and minimizes the consumption of energy, raw materials, and natural resources, while reducing waste production and adverse environmental impacts. Process optimization is used to improve the design and operation of the entire plants or the standalone chemical processes, by maximizing the process performance and minimizing the production cost, using mathematical and computational techniques. Academicians and researchers have developed advanced process integration and optimization techniques, and applied them on a wide range of industrial chemical and related processes. In those applications, the consumption of raw materials, natural resources and the production of wastes should be minimized by designing sustainable processes, and determining the best operating conditions that minimize the environmental impact, investment and operating costs, and exergy destruction (Domingos et al., 2022). Heuristics, thermodynamics and algorithmic approaches have been widely applied in process design and synthesis, although they are not exempt of drawbacks. The first two approaches do not guarantee that the optimum solution is obtained, as they do not use a systematic framework for synthetizing and integrating chemical plants, heat recovery networks and utility systems (Grossmann, 1985). Meanwhile, the algorithmic approach requires major computational effort and depends on the initial process superstructure. Thus, heuristics could be used in a preliminary screening to eliminate some alternatives or generate good estimates, whereas thermodynamic approaches could be used to develop bounds or eliminate energy inefficient alternatives. In turn, the algorithmic approaches could be useful to automatically generate integrated and optimized process flowsheets. In OPEN ACCESS\",\"PeriodicalId\":73073,\"journal\":{\"name\":\"Frontiers in chemical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in chemical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fceng.2022.961022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2022.961022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Editorial: Integration and optimization in the chemical process industry
Process integration and optimization are important areas within process system engineering. It identifies targets and utilizes synergies in the overall production process, and minimizes the consumption of energy, raw materials, and natural resources, while reducing waste production and adverse environmental impacts. Process optimization is used to improve the design and operation of the entire plants or the standalone chemical processes, by maximizing the process performance and minimizing the production cost, using mathematical and computational techniques. Academicians and researchers have developed advanced process integration and optimization techniques, and applied them on a wide range of industrial chemical and related processes. In those applications, the consumption of raw materials, natural resources and the production of wastes should be minimized by designing sustainable processes, and determining the best operating conditions that minimize the environmental impact, investment and operating costs, and exergy destruction (Domingos et al., 2022). Heuristics, thermodynamics and algorithmic approaches have been widely applied in process design and synthesis, although they are not exempt of drawbacks. The first two approaches do not guarantee that the optimum solution is obtained, as they do not use a systematic framework for synthetizing and integrating chemical plants, heat recovery networks and utility systems (Grossmann, 1985). Meanwhile, the algorithmic approach requires major computational effort and depends on the initial process superstructure. Thus, heuristics could be used in a preliminary screening to eliminate some alternatives or generate good estimates, whereas thermodynamic approaches could be used to develop bounds or eliminate energy inefficient alternatives. In turn, the algorithmic approaches could be useful to automatically generate integrated and optimized process flowsheets. In OPEN ACCESS