无k倍数的奇异过分割对的算术性质

Q2 Mathematics
S. Nayaka, T. K. Sreelakshmi, Santosh Kumar
{"title":"无k倍数的奇异过分割对的算术性质","authors":"S. Nayaka, T. K. Sreelakshmi, Santosh Kumar","doi":"10.1108/AJMS-01-2021-0013","DOIUrl":null,"url":null,"abstract":"<jats:sec><jats:title content-type=\"abstract-subheading\">Purpose</jats:title><jats:p>In this paper, the author defines the function <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msubsup><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>B</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mi>i</m:mi><m:mo>,</m:mo><m:mi>j</m:mi></m:mrow><m:mrow><m:mi>δ</m:mi><m:mo>,</m:mo><m:mi>k</m:mi></m:mrow></m:msubsup><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mrow><m:mi>n</m:mi></m:mrow><m:mo stretchy=\"false\">)</m:mo></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2021-0013001.tif\" /></jats:inline-formula>, the number of singular overpartition pairs of <jats:italic>n</jats:italic> without multiples of <jats:italic>k</jats:italic> in which no part is divisible by <jats:italic>δ</jats:italic> and only parts congruent to ± <jats:italic>i</jats:italic>, ± <jats:italic>j</jats:italic> modulo <jats:italic>δ</jats:italic> may be overlined.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Design/methodology/approach</jats:title><jats:p>Andrews introduced to combinatorial objects, which he called singular overpartitions and proved that these singular overpartitions depend on two parameters <jats:italic>δ</jats:italic> and <jats:italic>i</jats:italic> can be enumerated by the function <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msub><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>C</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mi>δ</m:mi><m:mo>,</m:mo><m:mi>i</m:mi></m:mrow></m:msub><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mrow><m:mi>n</m:mi></m:mrow><m:mo stretchy=\"false\">)</m:mo></m:mrow></m:math>,<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2021-0013002.tif\" /></jats:inline-formula> which gives the number of overpartitions of <jats:italic>n</jats:italic> in which no part divisible by <jats:italic>δ</jats:italic> and parts ≡ ± <jats:italic>i</jats:italic>(Mod <jats:italic>δ</jats:italic>) may be overlined.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Findings</jats:title><jats:p>Using classical spirit of <jats:italic>q</jats:italic>-series techniques, the author obtains congruences modulo 4 for <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msubsup><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>B</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mn>2,4</m:mn></m:mrow><m:mrow><m:mn>8,3</m:mn></m:mrow></m:msubsup><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mrow><m:mi>n</m:mi></m:mrow><m:mo stretchy=\"false\">)</m:mo></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2021-0013003.tif\" /></jats:inline-formula>, <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msubsup><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>B</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mn>2,4</m:mn></m:mrow><m:mrow><m:mn>8,5</m:mn></m:mrow></m:msubsup></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2021-0013004.tif\" /></jats:inline-formula> and <jats:inline-formula><m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:msubsup><m:mrow><m:mover accent=\"true\"><m:mrow><m:mi>B</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mn>2,4</m:mn></m:mrow><m:mrow><m:mn>12,3</m:mn></m:mrow></m:msubsup></m:math><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"AJMS-01-2021-0013005.tif\" /></jats:inline-formula>.</jats:p></jats:sec><jats:sec><jats:title content-type=\"abstract-subheading\">Originality/value</jats:title><jats:p>The results established in this work are extension to those proved in Andrews’ singular overpatition pairs of <jats:italic>n</jats:italic>.</jats:p></jats:sec>","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic properties of singular overpartition pairs without multiples of k\",\"authors\":\"S. Nayaka, T. K. Sreelakshmi, Santosh Kumar\",\"doi\":\"10.1108/AJMS-01-2021-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Purpose</jats:title><jats:p>In this paper, the author defines the function <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:msubsup><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>B</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mi>i</m:mi><m:mo>,</m:mo><m:mi>j</m:mi></m:mrow><m:mrow><m:mi>δ</m:mi><m:mo>,</m:mo><m:mi>k</m:mi></m:mrow></m:msubsup><m:mrow><m:mo stretchy=\\\"false\\\">(</m:mo><m:mrow><m:mi>n</m:mi></m:mrow><m:mo stretchy=\\\"false\\\">)</m:mo></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-01-2021-0013001.tif\\\" /></jats:inline-formula>, the number of singular overpartition pairs of <jats:italic>n</jats:italic> without multiples of <jats:italic>k</jats:italic> in which no part is divisible by <jats:italic>δ</jats:italic> and only parts congruent to ± <jats:italic>i</jats:italic>, ± <jats:italic>j</jats:italic> modulo <jats:italic>δ</jats:italic> may be overlined.</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Design/methodology/approach</jats:title><jats:p>Andrews introduced to combinatorial objects, which he called singular overpartitions and proved that these singular overpartitions depend on two parameters <jats:italic>δ</jats:italic> and <jats:italic>i</jats:italic> can be enumerated by the function <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:msub><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>C</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mi>δ</m:mi><m:mo>,</m:mo><m:mi>i</m:mi></m:mrow></m:msub><m:mrow><m:mo stretchy=\\\"false\\\">(</m:mo><m:mrow><m:mi>n</m:mi></m:mrow><m:mo stretchy=\\\"false\\\">)</m:mo></m:mrow></m:math>,<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-01-2021-0013002.tif\\\" /></jats:inline-formula> which gives the number of overpartitions of <jats:italic>n</jats:italic> in which no part divisible by <jats:italic>δ</jats:italic> and parts ≡ ± <jats:italic>i</jats:italic>(Mod <jats:italic>δ</jats:italic>) may be overlined.</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Findings</jats:title><jats:p>Using classical spirit of <jats:italic>q</jats:italic>-series techniques, the author obtains congruences modulo 4 for <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:msubsup><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>B</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mn>2,4</m:mn></m:mrow><m:mrow><m:mn>8,3</m:mn></m:mrow></m:msubsup><m:mrow><m:mo stretchy=\\\"false\\\">(</m:mo><m:mrow><m:mi>n</m:mi></m:mrow><m:mo stretchy=\\\"false\\\">)</m:mo></m:mrow></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-01-2021-0013003.tif\\\" /></jats:inline-formula>, <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:msubsup><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>B</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mn>2,4</m:mn></m:mrow><m:mrow><m:mn>8,5</m:mn></m:mrow></m:msubsup></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-01-2021-0013004.tif\\\" /></jats:inline-formula> and <jats:inline-formula><m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"><m:msubsup><m:mrow><m:mover accent=\\\"true\\\"><m:mrow><m:mi>B</m:mi></m:mrow><m:mo>¯</m:mo></m:mover></m:mrow><m:mrow><m:mn>2,4</m:mn></m:mrow><m:mrow><m:mn>12,3</m:mn></m:mrow></m:msubsup></m:math><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"AJMS-01-2021-0013005.tif\\\" /></jats:inline-formula>.</jats:p></jats:sec><jats:sec><jats:title content-type=\\\"abstract-subheading\\\">Originality/value</jats:title><jats:p>The results established in this work are extension to those proved in Andrews’ singular overpatition pairs of <jats:italic>n</jats:italic>.</jats:p></jats:sec>\",\"PeriodicalId\":36840,\"journal\":{\"name\":\"Arab Journal of Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arab Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/AJMS-01-2021-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/AJMS-01-2021-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

目的定义函数B¯i,jδ,k(n),无k倍的n的奇异过分割对的个数,其中不能被δ整除且只能与±i,±j模δ相等的部分可以被覆盖。设计/方法/方法andrews引入了组合对象,他称之为奇异过分割,并证明了这些奇异过分割依赖于两个参数δ和i,可以通过函数C¯δ,i(n)来枚举,它给出了n的过分割的数量,其中不能被δ整除的部分和部分≡±i(Mod δ)可以被覆盖。利用经典的q级数精神,得到了B¯2,48,3(n)、B¯2,48,5和B¯2,412,3的模4同余。本文所建立的结果是对Andrews的n的奇异过占对所证明的结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic properties of singular overpartition pairs without multiples of k
PurposeIn this paper, the author defines the function B¯i,jδ,k(n), the number of singular overpartition pairs of n without multiples of k in which no part is divisible by δ and only parts congruent to ± i, ± j modulo δ may be overlined.Design/methodology/approachAndrews introduced to combinatorial objects, which he called singular overpartitions and proved that these singular overpartitions depend on two parameters δ and i can be enumerated by the function C¯δ,i(n), which gives the number of overpartitions of n in which no part divisible by δ and parts ≡ ± i(Mod δ) may be overlined.FindingsUsing classical spirit of q-series techniques, the author obtains congruences modulo 4 for B¯2,48,3(n), B¯2,48,5 and B¯2,412,3.Originality/valueThe results established in this work are extension to those proved in Andrews’ singular overpatition pairs of n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信