{"title":"空间性、尖锐元素和域的Scott拓扑","authors":"Tom de Jong","doi":"10.1017/S0960129523000282","DOIUrl":null,"url":null,"abstract":"\n Working constructively, we study continuous directed complete posets (dcpos) and the Scott topology. Our two primary novelties are a notion of intrinsic apartness and a notion of sharp elements. Being apart is a positive formulation of being unequal, similar to how inhabitedness is a positive formulation of nonemptiness. To exemplify sharpness, we note that a lower real is sharp if and only if it is located. Our first main result is that for a large class of continuous dcpos, the Bridges–Vîţǎ apartness topology and the Scott topology coincide. Although we cannot expect a tight or cotransitive apartness on nontrivial dcpos, we prove that the intrinsic apartness is both tight and cotransitive when restricted to the sharp elements of a continuous dcpo. These include the strongly maximal elements, as studied by Smyth and Heckmann. We develop the theory of strongly maximal elements highlighting its connection to sharpness and the Lawson topology. Finally, we illustrate the intrinsic apartness, sharpness, and strong maximality by considering several natural examples of continuous dcpos: the Cantor and Baire domains, the partial Dedekind reals, the lower reals and, finally, an embedding of Cantor space into an exponential of lifted sets.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Apartness, sharp elements, and the Scott topology of domains\",\"authors\":\"Tom de Jong\",\"doi\":\"10.1017/S0960129523000282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Working constructively, we study continuous directed complete posets (dcpos) and the Scott topology. Our two primary novelties are a notion of intrinsic apartness and a notion of sharp elements. Being apart is a positive formulation of being unequal, similar to how inhabitedness is a positive formulation of nonemptiness. To exemplify sharpness, we note that a lower real is sharp if and only if it is located. Our first main result is that for a large class of continuous dcpos, the Bridges–Vîţǎ apartness topology and the Scott topology coincide. Although we cannot expect a tight or cotransitive apartness on nontrivial dcpos, we prove that the intrinsic apartness is both tight and cotransitive when restricted to the sharp elements of a continuous dcpo. These include the strongly maximal elements, as studied by Smyth and Heckmann. We develop the theory of strongly maximal elements highlighting its connection to sharpness and the Lawson topology. Finally, we illustrate the intrinsic apartness, sharpness, and strong maximality by considering several natural examples of continuous dcpos: the Cantor and Baire domains, the partial Dedekind reals, the lower reals and, finally, an embedding of Cantor space into an exponential of lifted sets.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S0960129523000282\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0960129523000282","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Apartness, sharp elements, and the Scott topology of domains
Working constructively, we study continuous directed complete posets (dcpos) and the Scott topology. Our two primary novelties are a notion of intrinsic apartness and a notion of sharp elements. Being apart is a positive formulation of being unequal, similar to how inhabitedness is a positive formulation of nonemptiness. To exemplify sharpness, we note that a lower real is sharp if and only if it is located. Our first main result is that for a large class of continuous dcpos, the Bridges–Vîţǎ apartness topology and the Scott topology coincide. Although we cannot expect a tight or cotransitive apartness on nontrivial dcpos, we prove that the intrinsic apartness is both tight and cotransitive when restricted to the sharp elements of a continuous dcpo. These include the strongly maximal elements, as studied by Smyth and Heckmann. We develop the theory of strongly maximal elements highlighting its connection to sharpness and the Lawson topology. Finally, we illustrate the intrinsic apartness, sharpness, and strong maximality by considering several natural examples of continuous dcpos: the Cantor and Baire domains, the partial Dedekind reals, the lower reals and, finally, an embedding of Cantor space into an exponential of lifted sets.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.