{"title":"零质量势Schrödinger-Poisson系统非平凡解的存在性和不存在性","authors":"Xiaoping Wang, Fulai Chen, Fangfang Liao","doi":"10.1515/anona-2022-0319","DOIUrl":null,"url":null,"abstract":"Abstract In this article, under some weaker assumptions on a > 0 a\\gt 0 and f f , the authors aim to study the existence of nontrivial radial solutions and nonexistence of nontrivial solutions for the following Schrödinger-Poisson system with zero mass potential − Δ u + ϕ u = − a ∣ u ∣ p − 2 u + f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \\left\\{\\begin{array}{ll}-\\Delta u+\\phi u=-a{| u| }^{p-2}u+f\\left(u),& x\\in {{\\mathbb{R}}}^{3},\\\\ -\\Delta \\phi ={u}^{2},& x\\in {{\\mathbb{R}}}^{3},\\end{array}\\right. where p ∈ 2 , 12 5 p\\in \\left(2,\\frac{12}{5}\\right) . In particular, as a corollary for the following system: − Δ u + ϕ u = − ∣ u ∣ p − 2 u + ∣ u ∣ q − 2 u , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \\left\\{\\begin{array}{ll}-\\Delta u+\\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\\in {{\\mathbb{R}}}^{3},\\\\ -\\Delta \\phi ={u}^{2},& x\\in {{\\mathbb{R}}}^{3},\\end{array}\\right. a sufficient and necessary condition is obtained on the existence of nontrivial radial solutions.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson system with zero mass potential\",\"authors\":\"Xiaoping Wang, Fulai Chen, Fangfang Liao\",\"doi\":\"10.1515/anona-2022-0319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, under some weaker assumptions on a > 0 a\\\\gt 0 and f f , the authors aim to study the existence of nontrivial radial solutions and nonexistence of nontrivial solutions for the following Schrödinger-Poisson system with zero mass potential − Δ u + ϕ u = − a ∣ u ∣ p − 2 u + f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \\\\left\\\\{\\\\begin{array}{ll}-\\\\Delta u+\\\\phi u=-a{| u| }^{p-2}u+f\\\\left(u),& x\\\\in {{\\\\mathbb{R}}}^{3},\\\\\\\\ -\\\\Delta \\\\phi ={u}^{2},& x\\\\in {{\\\\mathbb{R}}}^{3},\\\\end{array}\\\\right. where p ∈ 2 , 12 5 p\\\\in \\\\left(2,\\\\frac{12}{5}\\\\right) . In particular, as a corollary for the following system: − Δ u + ϕ u = − ∣ u ∣ p − 2 u + ∣ u ∣ q − 2 u , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \\\\left\\\\{\\\\begin{array}{ll}-\\\\Delta u+\\\\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\\\\in {{\\\\mathbb{R}}}^{3},\\\\\\\\ -\\\\Delta \\\\phi ={u}^{2},& x\\\\in {{\\\\mathbb{R}}}^{3},\\\\end{array}\\\\right. a sufficient and necessary condition is obtained on the existence of nontrivial radial solutions.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0319\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0319","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
摘要本文在> 0 a \gt 0和f f的一些较弱的假设下,研究了以下具有零质量势能的Schrödinger-Poisson系统- Δ u + φ u = - a∣u∣p - 2 u + f (u), x∈R 3, - Δ φ = u 2, x∈R 3, \left {\begin{array}{ll}-\Delta u+\phi u=-a{| u| }^{p-2}u+f\left(u),& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right的非平凡径向解的存在性和非平凡解的不存在性。式中p∈2,125 p \in\left (2, \frac{12}{5}\right)。特别地,作为以下系统的推论:−Δ u + φ u =−∣u∣p−2 u +∣u∣q−2 u, x∈R 3,−Δ φ = u 2, x∈R 3, \left {\begin{array}{ll}-\Delta u+\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right。得到了非平凡径向解存在的一个充要条件。
Existence and nonexistence of nontrivial solutions for the Schrödinger-Poisson system with zero mass potential
Abstract In this article, under some weaker assumptions on a > 0 a\gt 0 and f f , the authors aim to study the existence of nontrivial radial solutions and nonexistence of nontrivial solutions for the following Schrödinger-Poisson system with zero mass potential − Δ u + ϕ u = − a ∣ u ∣ p − 2 u + f ( u ) , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \left\{\begin{array}{ll}-\Delta u+\phi u=-a{| u| }^{p-2}u+f\left(u),& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right. where p ∈ 2 , 12 5 p\in \left(2,\frac{12}{5}\right) . In particular, as a corollary for the following system: − Δ u + ϕ u = − ∣ u ∣ p − 2 u + ∣ u ∣ q − 2 u , x ∈ R 3 , − Δ ϕ = u 2 , x ∈ R 3 , \left\{\begin{array}{ll}-\Delta u+\phi u=-{| u| }^{p-2}u+{| u| }^{q-2}u,& x\in {{\mathbb{R}}}^{3},\\ -\Delta \phi ={u}^{2},& x\in {{\mathbb{R}}}^{3},\end{array}\right. a sufficient and necessary condition is obtained on the existence of nontrivial radial solutions.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.