犬牙草素的抗氧化和抑制作用

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY
J. Đorović, M. Antonijević, Z. Marković
{"title":"犬牙草素的抗氧化和抑制作用","authors":"J. Đorović, M. Antonijević, Z. Marković","doi":"10.24874/JSSCM.2020.01.06","DOIUrl":null,"url":null,"abstract":"The antioxidant activity of cynodontin was studied in the absence and the presence of free radical species. This in silico study was performed in water and benzene, with the aim to simulate polar and non-polar environment. To determine the most probable mechanism of antioxidant action, density functional theory (DFT) was employed. The change in reaction enthalpy of cynodontin with three different free radicals (hydroxyl, hydroperoxyl, and methyl peroxyl radical) were examined and presented. SET-PT (Single Electron Transfer – Proton Transfer) mechanism is not an operative mechanism of antioxidant action. The obtained results imply that the possible mechanism of antioxidant action in water is SPLET (Sequential Proton Loss Electron Transfer), while in benzene HAT (Hydrogen atom transfer) and SPLET are competitive mechanisms. The molecular docking study was performed in order to estimate the inhibition potency of the investigated compound toward human leukocyte elastase (HLE). The obtained results indicate that numerous interactions determine the inhibition activity towards the investigated protein.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ANTIOXIDATIVE AND INHIBITION POTENCY OF CYNODONTIN\",\"authors\":\"J. Đorović, M. Antonijević, Z. Marković\",\"doi\":\"10.24874/JSSCM.2020.01.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The antioxidant activity of cynodontin was studied in the absence and the presence of free radical species. This in silico study was performed in water and benzene, with the aim to simulate polar and non-polar environment. To determine the most probable mechanism of antioxidant action, density functional theory (DFT) was employed. The change in reaction enthalpy of cynodontin with three different free radicals (hydroxyl, hydroperoxyl, and methyl peroxyl radical) were examined and presented. SET-PT (Single Electron Transfer – Proton Transfer) mechanism is not an operative mechanism of antioxidant action. The obtained results imply that the possible mechanism of antioxidant action in water is SPLET (Sequential Proton Loss Electron Transfer), while in benzene HAT (Hydrogen atom transfer) and SPLET are competitive mechanisms. The molecular docking study was performed in order to estimate the inhibition potency of the investigated compound toward human leukocyte elastase (HLE). The obtained results indicate that numerous interactions determine the inhibition activity towards the investigated protein.\",\"PeriodicalId\":42945,\"journal\":{\"name\":\"Journal of the Serbian Society for Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Serbian Society for Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/JSSCM.2020.01.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/JSSCM.2020.01.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

研究了在不存在和存在自由基物质的情况下,食蟹齿素的抗氧化活性。这项计算机研究是在水和苯中进行的,目的是模拟极地和非极地环境。为了确定抗氧化作用的最可能机制,采用了密度泛函理论(DFT)。考察并介绍了氢氧化锡与三种不同自由基(羟基、氢过氧基和甲基过氧基)反应焓的变化。SET-PT(单电子转移-质子转移)机制不是抗氧化作用的有效机制。结果表明,在水中抗氧化作用的可能机制是SPLET(顺序质子损失电子转移),而在苯中HAT(氢原子转移)和SPLET是竞争机制。进行分子对接研究是为了估计所研究的化合物对人类白细胞弹性蛋白酶(HLE)的抑制效力。所获得的结果表明,许多相互作用决定了对所研究的蛋白质的抑制活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANTIOXIDATIVE AND INHIBITION POTENCY OF CYNODONTIN
The antioxidant activity of cynodontin was studied in the absence and the presence of free radical species. This in silico study was performed in water and benzene, with the aim to simulate polar and non-polar environment. To determine the most probable mechanism of antioxidant action, density functional theory (DFT) was employed. The change in reaction enthalpy of cynodontin with three different free radicals (hydroxyl, hydroperoxyl, and methyl peroxyl radical) were examined and presented. SET-PT (Single Electron Transfer – Proton Transfer) mechanism is not an operative mechanism of antioxidant action. The obtained results imply that the possible mechanism of antioxidant action in water is SPLET (Sequential Proton Loss Electron Transfer), while in benzene HAT (Hydrogen atom transfer) and SPLET are competitive mechanisms. The molecular docking study was performed in order to estimate the inhibition potency of the investigated compound toward human leukocyte elastase (HLE). The obtained results indicate that numerous interactions determine the inhibition activity towards the investigated protein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信