Toshiaki Tsukurimichi, Yu Inatsu, Vo Nguyen Le Duy, Ichiro Takeuchi
{"title":"稳健回归的条件选择推理和分段线性同伦延拓的离群值检测","authors":"Toshiaki Tsukurimichi, Yu Inatsu, Vo Nguyen Le Duy, Ichiro Takeuchi","doi":"10.1007/s10463-022-00846-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider conditional selective inference (SI) for a linear model estimated after outliers are removed from the data. To apply the conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing conditional SIs cannot be directly applied to our problem because they are applicable to the case where the selection events can be represented by linear or quadratic constraints. We propose a conditional SI method for popular robust regressions such as least-absolute-deviation regression and Huber regression by introducing a new computational method using a convex optimization technique called homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation\",\"authors\":\"Toshiaki Tsukurimichi, Yu Inatsu, Vo Nguyen Le Duy, Ichiro Takeuchi\",\"doi\":\"10.1007/s10463-022-00846-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider conditional selective inference (SI) for a linear model estimated after outliers are removed from the data. To apply the conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing conditional SIs cannot be directly applied to our problem because they are applicable to the case where the selection events can be represented by linear or quadratic constraints. We propose a conditional SI method for popular robust regressions such as least-absolute-deviation regression and Huber regression by introducing a new computational method using a convex optimization technique called homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-022-00846-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00846-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Conditional selective inference for robust regression and outlier detection using piecewise-linear homotopy continuation
In this paper, we consider conditional selective inference (SI) for a linear model estimated after outliers are removed from the data. To apply the conditional SI framework, it is necessary to characterize the events of how the robust method identifies outliers. Unfortunately, the existing conditional SIs cannot be directly applied to our problem because they are applicable to the case where the selection events can be represented by linear or quadratic constraints. We propose a conditional SI method for popular robust regressions such as least-absolute-deviation regression and Huber regression by introducing a new computational method using a convex optimization technique called homotopy method. We show that the proposed conditional SI method is applicable to a wide class of robust regression and outlier detection methods and has good empirical performance on both synthetic data and real data experiments.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.