非参数机器学习算法在员工人才预测中的比较

I Ketut Adi Wirayasa, Arko Djajadi, H. Santoso, Eko Indrajit
{"title":"非参数机器学习算法在员工人才预测中的比较","authors":"I Ketut Adi Wirayasa, Arko Djajadi, H. Santoso, Eko Indrajit","doi":"10.22146/IJCCS.69366","DOIUrl":null,"url":null,"abstract":"Classification of ordinal data is part of categorical data. Ordinal data consists of features with values based on order or ranking. The use of machine learning methods in Human Resources Management is intended to support decision-making based on objective data analysis, and not on subjective aspects. The purpose of this study is to analyze the relationship between features, and whether the features used as objective factors can classify, and predict certain talented employees or not. This study uses a public dataset provided by IBM analytics. Analysis of the dataset using statistical tests, and confirmatory factor analysis validity tests, intended to determine the relationship or correlation between features in formulating hypothesis testing before building a model by using a comparison of four algorithms, namely Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Artificial Neural Networks. The test results are expressed in the Confusion Matrix, and report classification of each model. The best evaluation is produced by the SVM algorithm with the same Accuracy, Precision, and Recall values, which are 94.00%, Sensitivity 93.28%, False Positive rate 4.62%, False Negative rate 6.72%,  and AUC-ROC curve value 0.97 with an excellent category in performing classification of the employee talent prediction model.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison Non-Parametric Machine Learning Algorithms for Prediction of Employee Talent\",\"authors\":\"I Ketut Adi Wirayasa, Arko Djajadi, H. Santoso, Eko Indrajit\",\"doi\":\"10.22146/IJCCS.69366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of ordinal data is part of categorical data. Ordinal data consists of features with values based on order or ranking. The use of machine learning methods in Human Resources Management is intended to support decision-making based on objective data analysis, and not on subjective aspects. The purpose of this study is to analyze the relationship between features, and whether the features used as objective factors can classify, and predict certain talented employees or not. This study uses a public dataset provided by IBM analytics. Analysis of the dataset using statistical tests, and confirmatory factor analysis validity tests, intended to determine the relationship or correlation between features in formulating hypothesis testing before building a model by using a comparison of four algorithms, namely Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Artificial Neural Networks. The test results are expressed in the Confusion Matrix, and report classification of each model. The best evaluation is produced by the SVM algorithm with the same Accuracy, Precision, and Recall values, which are 94.00%, Sensitivity 93.28%, False Positive rate 4.62%, False Negative rate 6.72%,  and AUC-ROC curve value 0.97 with an excellent category in performing classification of the employee talent prediction model.\",\"PeriodicalId\":31625,\"journal\":{\"name\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/IJCCS.69366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJCCS.69366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有序数据的分类是分类数据的一部分。有序数据由具有基于顺序或排名的值的特征组成。在人力资源管理中使用机器学习方法是为了支持基于客观数据分析的决策,而不是基于主观方面。本研究的目的是分析特征之间的关系,以及作为客观因素的特征是否可以对某些人才进行分类和预测。本研究使用IBM analytics提供的公共数据集。使用统计检验和验证性因子分析效度检验对数据集进行分析,旨在通过比较支持向量机、k近邻、决策树和人工神经网络四种算法,确定在建立模型之前制定假设检验的特征之间的关系或相关性。测试结果用混淆矩阵表示,并报告每个模型的分类。SVM算法对员工人才预测模型进行分类时,准确率、精密度和召回率均为94.00%,灵敏度为93.28%,假阳性率为4.62%,假阴性率为6.72%,AUC-ROC曲线值为0.97,评价最佳,类别优秀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison Non-Parametric Machine Learning Algorithms for Prediction of Employee Talent
Classification of ordinal data is part of categorical data. Ordinal data consists of features with values based on order or ranking. The use of machine learning methods in Human Resources Management is intended to support decision-making based on objective data analysis, and not on subjective aspects. The purpose of this study is to analyze the relationship between features, and whether the features used as objective factors can classify, and predict certain talented employees or not. This study uses a public dataset provided by IBM analytics. Analysis of the dataset using statistical tests, and confirmatory factor analysis validity tests, intended to determine the relationship or correlation between features in formulating hypothesis testing before building a model by using a comparison of four algorithms, namely Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Artificial Neural Networks. The test results are expressed in the Confusion Matrix, and report classification of each model. The best evaluation is produced by the SVM algorithm with the same Accuracy, Precision, and Recall values, which are 94.00%, Sensitivity 93.28%, False Positive rate 4.62%, False Negative rate 6.72%,  and AUC-ROC curve value 0.97 with an excellent category in performing classification of the employee talent prediction model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信