通过独立场地近似支配占用过程

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
R. McVinish
{"title":"通过独立场地近似支配占用过程","authors":"R. McVinish","doi":"10.1214/22-ecp499","DOIUrl":null,"url":null,"abstract":"Occupancy processes are a broad class of discrete time Markov chains on $\\{0,1\\}^{n}$ encompassing models from diverse areas. This model is compared to a collection of $n$ independent Markov chains on $\\{0,1\\}$, which we call the independent site model. We establish conditions under which an occupancy process is smaller in the lower orthant order than the independent site model. An analogous result for spin systems follows by a limiting argument.}","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominating occupancy processes by the independent site approximation\",\"authors\":\"R. McVinish\",\"doi\":\"10.1214/22-ecp499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Occupancy processes are a broad class of discrete time Markov chains on $\\\\{0,1\\\\}^{n}$ encompassing models from diverse areas. This model is compared to a collection of $n$ independent Markov chains on $\\\\{0,1\\\\}$, which we call the independent site model. We establish conditions under which an occupancy process is smaller in the lower orthant order than the independent site model. An analogous result for spin systems follows by a limiting argument.}\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ecp499\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp499","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

占有过程是一类广义的离散时间马尔可夫链,在$\{0,1\}^{n}$上包含了来自不同领域的模型。将该模型与$\{0,1\}$上的$n$独立马尔可夫链的集合进行比较,我们称之为独立站点模型。我们建立了一个条件,在这个条件下,占用过程在低邻序上比独立站点模型要小。自旋系统的类似结果后面有一个极限参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dominating occupancy processes by the independent site approximation
Occupancy processes are a broad class of discrete time Markov chains on $\{0,1\}^{n}$ encompassing models from diverse areas. This model is compared to a collection of $n$ independent Markov chains on $\{0,1\}$, which we call the independent site model. We establish conditions under which an occupancy process is smaller in the lower orthant order than the independent site model. An analogous result for spin systems follows by a limiting argument.}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信