{"title":"自适应模糊字符串匹配:如何合并只有一个(混乱)识别字段的数据集","authors":"A. Kaufman, Aja Klevs","doi":"10.1017/pan.2021.38","DOIUrl":null,"url":null,"abstract":"Abstract A single dataset is rarely sufficient to address a question of substantive interest. Instead, most applied data analysis combines data from multiple sources. Very rarely do two datasets contain the same identifiers with which to merge datasets; fields like name, address, and phone number may be entered incorrectly, missing, or in dissimilar formats. Combining multiple datasets absent a unique identifier that unambiguously connects entries is called the record linkage problem. While recent work has made great progress in the case where there are many possible fields on which to match, the much more uncertain case of only one identifying field remains unsolved: this fuzzy string matching problem, both its own problem and a component of standard record linkage problems, is our focus. We design and validate an algorithmic solution called Adaptive Fuzzy String Matching rooted in adaptive learning, and show that our tool identifies more matches, with higher precision, than existing solutions. Finally, we illustrate its validity and practical value through applications to matching organizations, places, and individuals.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"30 1","pages":"590 - 596"},"PeriodicalIF":4.7000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive Fuzzy String Matching: How to Merge Datasets with Only One (Messy) Identifying Field\",\"authors\":\"A. Kaufman, Aja Klevs\",\"doi\":\"10.1017/pan.2021.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A single dataset is rarely sufficient to address a question of substantive interest. Instead, most applied data analysis combines data from multiple sources. Very rarely do two datasets contain the same identifiers with which to merge datasets; fields like name, address, and phone number may be entered incorrectly, missing, or in dissimilar formats. Combining multiple datasets absent a unique identifier that unambiguously connects entries is called the record linkage problem. While recent work has made great progress in the case where there are many possible fields on which to match, the much more uncertain case of only one identifying field remains unsolved: this fuzzy string matching problem, both its own problem and a component of standard record linkage problems, is our focus. We design and validate an algorithmic solution called Adaptive Fuzzy String Matching rooted in adaptive learning, and show that our tool identifies more matches, with higher precision, than existing solutions. Finally, we illustrate its validity and practical value through applications to matching organizations, places, and individuals.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\"30 1\",\"pages\":\"590 - 596\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2021.38\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2021.38","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
Adaptive Fuzzy String Matching: How to Merge Datasets with Only One (Messy) Identifying Field
Abstract A single dataset is rarely sufficient to address a question of substantive interest. Instead, most applied data analysis combines data from multiple sources. Very rarely do two datasets contain the same identifiers with which to merge datasets; fields like name, address, and phone number may be entered incorrectly, missing, or in dissimilar formats. Combining multiple datasets absent a unique identifier that unambiguously connects entries is called the record linkage problem. While recent work has made great progress in the case where there are many possible fields on which to match, the much more uncertain case of only one identifying field remains unsolved: this fuzzy string matching problem, both its own problem and a component of standard record linkage problems, is our focus. We design and validate an algorithmic solution called Adaptive Fuzzy String Matching rooted in adaptive learning, and show that our tool identifies more matches, with higher precision, than existing solutions. Finally, we illustrate its validity and practical value through applications to matching organizations, places, and individuals.
期刊介绍:
Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.