{"title":"PtPd/TiO2低温甲苯氧化催化剂研究","authors":"Liheng Tu, Rui Liu, Dan Zhao, Hui Ding, Jiahao Cui, Benqiang Liang","doi":"10.1007/s10563-021-09335-7","DOIUrl":null,"url":null,"abstract":"<div><p>The preparation of atomically dispersed catalysts with high metal loading remains a formidable challenge due to the high surface energy of single atoms. Here we prepared PtPd/TiO<sub>2</sub> catalysts possessing metal loading as high as 8.17 wt% by a new versatile method which based on metal oxide carriers with abundant oxygen defects. PtPd/TiO<sub>2</sub> catalysts consist of PtPd nanoparticles and atomically dispersed Pt and Pd atoms, and the content of PtPd nanoparticles is little. Pt<sub>3</sub>Pd<sub>1</sub>/TiO<sub>2</sub>-400 catalyst exhibited the highest catalytic activity in toluene oxidation, and with a 94.7% conversion at 110 °C. Kinetic investigation reveals that the toluene oxidation follows a typical Langmuir-Hinshelwood mechanism. Experimental research indicates that the superior catalytic activity could be attributed to a large number of metal atoms atomically dispersed on the surface of the catalyst. Pt and Pd atoms are close to each other, which produces the synergetic effect and thereby promotes toluene oxidation. This work provides a promising pathway to fabricate single atom catalysts with high loading.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10563-021-09335-7","citationCount":"3","resultStr":"{\"title\":\"PtPd/TiO2 Catalysts for Low‐Temperature Toluene Oxidation\",\"authors\":\"Liheng Tu, Rui Liu, Dan Zhao, Hui Ding, Jiahao Cui, Benqiang Liang\",\"doi\":\"10.1007/s10563-021-09335-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The preparation of atomically dispersed catalysts with high metal loading remains a formidable challenge due to the high surface energy of single atoms. Here we prepared PtPd/TiO<sub>2</sub> catalysts possessing metal loading as high as 8.17 wt% by a new versatile method which based on metal oxide carriers with abundant oxygen defects. PtPd/TiO<sub>2</sub> catalysts consist of PtPd nanoparticles and atomically dispersed Pt and Pd atoms, and the content of PtPd nanoparticles is little. Pt<sub>3</sub>Pd<sub>1</sub>/TiO<sub>2</sub>-400 catalyst exhibited the highest catalytic activity in toluene oxidation, and with a 94.7% conversion at 110 °C. Kinetic investigation reveals that the toluene oxidation follows a typical Langmuir-Hinshelwood mechanism. Experimental research indicates that the superior catalytic activity could be attributed to a large number of metal atoms atomically dispersed on the surface of the catalyst. Pt and Pd atoms are close to each other, which produces the synergetic effect and thereby promotes toluene oxidation. This work provides a promising pathway to fabricate single atom catalysts with high loading.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10563-021-09335-7\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-021-09335-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09335-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
PtPd/TiO2 Catalysts for Low‐Temperature Toluene Oxidation
The preparation of atomically dispersed catalysts with high metal loading remains a formidable challenge due to the high surface energy of single atoms. Here we prepared PtPd/TiO2 catalysts possessing metal loading as high as 8.17 wt% by a new versatile method which based on metal oxide carriers with abundant oxygen defects. PtPd/TiO2 catalysts consist of PtPd nanoparticles and atomically dispersed Pt and Pd atoms, and the content of PtPd nanoparticles is little. Pt3Pd1/TiO2-400 catalyst exhibited the highest catalytic activity in toluene oxidation, and with a 94.7% conversion at 110 °C. Kinetic investigation reveals that the toluene oxidation follows a typical Langmuir-Hinshelwood mechanism. Experimental research indicates that the superior catalytic activity could be attributed to a large number of metal atoms atomically dispersed on the surface of the catalyst. Pt and Pd atoms are close to each other, which produces the synergetic effect and thereby promotes toluene oxidation. This work provides a promising pathway to fabricate single atom catalysts with high loading.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.