考虑进气道畸变的跨声速压气机叶尖喷射失速控制研究

IF 1.1 Q4 ENGINEERING, MECHANICAL
Wenqiang Zhang, M. Vahdati
{"title":"考虑进气道畸变的跨声速压气机叶尖喷射失速控制研究","authors":"Wenqiang Zhang, M. Vahdati","doi":"10.33737/gpps20-tc-22","DOIUrl":null,"url":null,"abstract":"Experimental studies have shown that tip injection upstream of the rotor can extend its operational range when subjected to circumferential inlet distortion. Typically, injectors are placed uniformly around the annulus. However, such arrangement consumes a large amount of high-pressure air and decreases the overall efficiency of the compression system. The aim of this paper is to minimise the amount of the injected air by determining the most effective circumferential location for the injector.\nIn this study, NASA stage 35 was used as the test case. The experiment was conducted with a circumferential total pressure distortion of 120 degrees. In the first part of this paper, numerical simulations were compared against the experimental data and good match was obtained. In the second part, tip injection at three different positions were tested: the clean flow region (Position 1), the distorted region (Position 2) and the border between the clean and distorted regions (Position 3). It was found that a mild injection (0.66% of the main flow) at Position 2 and Position 3 can extend the stall margin by 1.8% and 2.7%, respectively. No obvious improvement was observed for the injection at Position 1. With a larger injection of 1.5% of main flow at Position 3, the stall margin improved further with no efficiency loss.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of the tip injection for stall control in a transonic compressor with inlet distortion\",\"authors\":\"Wenqiang Zhang, M. Vahdati\",\"doi\":\"10.33737/gpps20-tc-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental studies have shown that tip injection upstream of the rotor can extend its operational range when subjected to circumferential inlet distortion. Typically, injectors are placed uniformly around the annulus. However, such arrangement consumes a large amount of high-pressure air and decreases the overall efficiency of the compression system. The aim of this paper is to minimise the amount of the injected air by determining the most effective circumferential location for the injector.\\nIn this study, NASA stage 35 was used as the test case. The experiment was conducted with a circumferential total pressure distortion of 120 degrees. In the first part of this paper, numerical simulations were compared against the experimental data and good match was obtained. In the second part, tip injection at three different positions were tested: the clean flow region (Position 1), the distorted region (Position 2) and the border between the clean and distorted regions (Position 3). It was found that a mild injection (0.66% of the main flow) at Position 2 and Position 3 can extend the stall margin by 1.8% and 2.7%, respectively. No obvious improvement was observed for the injection at Position 1. With a larger injection of 1.5% of main flow at Position 3, the stall margin improved further with no efficiency loss.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/gpps20-tc-22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/gpps20-tc-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

实验研究表明,在进气道周向畸变作用下,转子上游的尖端喷射可以扩大其工作范围。通常,注入器均匀地放置在环空周围。然而,这种布置消耗了大量的高压空气,降低了压缩系统的整体效率。本文的目的是通过确定喷射器最有效的周向位置来最小化注入空气的量。在本研究中,NASA阶段35被用作测试案例。实验是在120度的周向总压畸变下进行的。本文第一部分将数值模拟与实验数据进行了比较,得到了较好的吻合结果。在第二部分中,对洁净区(位置1)、畸变区(位置2)和洁净区与畸变区交界处(位置3)三个不同位置的叶尖喷射进行了测试。结果发现,在位置2和位置3进行轻度喷射(占主流的0.66%)可分别延长1.8%和2.7%的失速裕度。第1位注射未见明显改善。在3号位置注入1.5%的主流流量,进一步提高了失速余量,同时没有效率损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of the tip injection for stall control in a transonic compressor with inlet distortion
Experimental studies have shown that tip injection upstream of the rotor can extend its operational range when subjected to circumferential inlet distortion. Typically, injectors are placed uniformly around the annulus. However, such arrangement consumes a large amount of high-pressure air and decreases the overall efficiency of the compression system. The aim of this paper is to minimise the amount of the injected air by determining the most effective circumferential location for the injector. In this study, NASA stage 35 was used as the test case. The experiment was conducted with a circumferential total pressure distortion of 120 degrees. In the first part of this paper, numerical simulations were compared against the experimental data and good match was obtained. In the second part, tip injection at three different positions were tested: the clean flow region (Position 1), the distorted region (Position 2) and the border between the clean and distorted regions (Position 3). It was found that a mild injection (0.66% of the main flow) at Position 2 and Position 3 can extend the stall margin by 1.8% and 2.7%, respectively. No obvious improvement was observed for the injection at Position 1. With a larger injection of 1.5% of main flow at Position 3, the stall margin improved further with no efficiency loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信