无条件期望一维倒向随机微分方程的一种新的数值解法

IF 0.3 Q4 STATISTICS & PROBABILITY
A. Sghir, Sokaina Hadiri
{"title":"无条件期望一维倒向随机微分方程的一种新的数值解法","authors":"A. Sghir, Sokaina Hadiri","doi":"10.1515/rose-2020-2030","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a new numerical method for 1-D backward stochastic differential equations (BSDEs for short) without using conditional expectations. The approximations of the solutions are obtained as solutions of a backward linear system generated by the terminal conditions. Our idea is inspired from the extended Kalman filter to non-linear system models by using a linear approximation around deterministic nominal reference trajectories.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"28 1","pages":"79 - 91"},"PeriodicalIF":0.3000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rose-2020-2030","citationCount":"3","resultStr":"{\"title\":\"A new numerical method for 1-D backward stochastic differential equations without using conditional expectations\",\"authors\":\"A. Sghir, Sokaina Hadiri\",\"doi\":\"10.1515/rose-2020-2030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose a new numerical method for 1-D backward stochastic differential equations (BSDEs for short) without using conditional expectations. The approximations of the solutions are obtained as solutions of a backward linear system generated by the terminal conditions. Our idea is inspired from the extended Kalman filter to non-linear system models by using a linear approximation around deterministic nominal reference trajectories.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"28 1\",\"pages\":\"79 - 91\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rose-2020-2030\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2020-2030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2020-2030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文提出了一种新的不使用条件期望的一维倒向随机微分方程(BSDEs)的数值求解方法。解的近似形式是由末端条件产生的后向线性系统的解。我们的想法是从扩展卡尔曼滤波到非线性系统模型的启发,通过在确定性标称参考轨迹周围使用线性近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new numerical method for 1-D backward stochastic differential equations without using conditional expectations
Abstract In this paper, we propose a new numerical method for 1-D backward stochastic differential equations (BSDEs for short) without using conditional expectations. The approximations of the solutions are obtained as solutions of a backward linear system generated by the terminal conditions. Our idea is inspired from the extended Kalman filter to non-linear system models by using a linear approximation around deterministic nominal reference trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信