{"title":"算法xxx:用R中的三次积分平滑样条积分恢复函数","authors":"Yu. D. Korablev","doi":"10.1145/3519384","DOIUrl":null,"url":null,"abstract":"\n In this paper, a cubic integral smoothing spline with roughness penalty for restoring a function by integrals is described. A mathematical method for building such a spline is described in detail. The method is based on cubic integral spline with a penalty function, which minimizes the sum of squares of the difference between the observed integrals of the unknown function and the integrals of the spline being constructed, plus an additional penalty for the nonlinearity (roughness) of the spline. This method has a matrix form, and this paper shows in detail how to fill in each matrix. The parameter\n α\n governs the desired smoothness of the restored function. Spline knots can be chosen independently of observations, and a weight can be defined for each observation for more control over the resulting spline shape. An implementation in the R language as function\n int_spline\n is given. The function\n int_spline\n is easy to use, with all arguments completely described and corresponding examples given. An example of the application of the method in rare event analysis and forecasting is given.\n","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithm xxx: Restoration of function by integrals with cubic integral smoothing spline in R\",\"authors\":\"Yu. D. Korablev\",\"doi\":\"10.1145/3519384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a cubic integral smoothing spline with roughness penalty for restoring a function by integrals is described. A mathematical method for building such a spline is described in detail. The method is based on cubic integral spline with a penalty function, which minimizes the sum of squares of the difference between the observed integrals of the unknown function and the integrals of the spline being constructed, plus an additional penalty for the nonlinearity (roughness) of the spline. This method has a matrix form, and this paper shows in detail how to fill in each matrix. The parameter\\n α\\n governs the desired smoothness of the restored function. Spline knots can be chosen independently of observations, and a weight can be defined for each observation for more control over the resulting spline shape. An implementation in the R language as function\\n int_spline\\n is given. The function\\n int_spline\\n is easy to use, with all arguments completely described and corresponding examples given. An example of the application of the method in rare event analysis and forecasting is given.\\n\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3519384\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3519384","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Algorithm xxx: Restoration of function by integrals with cubic integral smoothing spline in R
In this paper, a cubic integral smoothing spline with roughness penalty for restoring a function by integrals is described. A mathematical method for building such a spline is described in detail. The method is based on cubic integral spline with a penalty function, which minimizes the sum of squares of the difference between the observed integrals of the unknown function and the integrals of the spline being constructed, plus an additional penalty for the nonlinearity (roughness) of the spline. This method has a matrix form, and this paper shows in detail how to fill in each matrix. The parameter
α
governs the desired smoothness of the restored function. Spline knots can be chosen independently of observations, and a weight can be defined for each observation for more control over the resulting spline shape. An implementation in the R language as function
int_spline
is given. The function
int_spline
is easy to use, with all arguments completely described and corresponding examples given. An example of the application of the method in rare event analysis and forecasting is given.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.