块舒尔产品是阿达玛产品

Pub Date : 2020-09-03 DOI:10.7146/math.scand.a-121069
Erik Christensen
{"title":"块舒尔产品是阿达玛产品","authors":"Erik Christensen","doi":"10.7146/math.scand.a-121069","DOIUrl":null,"url":null,"abstract":"Given two $n \\times n $ matrices $A = (a_{ij})$ and $B=(b_{ij}) $ with entries in $B(H)$ for some Hilbert space $H$, their block Schur product is the $n \\times n$ matrix $ A\\square B := (a_{ij}b_{ij})$. Given two continuous functions $f$ and $g$ on the torus with Fourier coefficients $(f_n)$ and $(g_n)$ their convolution product $f \\star g$ has Fourier coefficients $(f_n g_n)$. Based on this, the Schur product on scalar matrices is also known as the Hadamard product. \nWe show that for a C*-algebra $\\mathcal{A} $, and a discrete group $G$ with an action $\\alpha _g$ of $G$ on $\\mathcal{A} $ by *-automorphisms, the reduced crossed product C*-algebra $\\mathrm {C}^*_r(\\mathcal{A} , \\alpha , G)$ possesses a natural generalization of the convolution product, which we suggest should be named the Hadamard product. \nWe show that this product has a natural Stinespring representation and we lift some known results on block Schur products to this setting, but we also show that the block Schur product is a special case of the Hadamard product in a crossed product algebra.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The block Schur product is a Hadamard product\",\"authors\":\"Erik Christensen\",\"doi\":\"10.7146/math.scand.a-121069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two $n \\\\times n $ matrices $A = (a_{ij})$ and $B=(b_{ij}) $ with entries in $B(H)$ for some Hilbert space $H$, their block Schur product is the $n \\\\times n$ matrix $ A\\\\square B := (a_{ij}b_{ij})$. Given two continuous functions $f$ and $g$ on the torus with Fourier coefficients $(f_n)$ and $(g_n)$ their convolution product $f \\\\star g$ has Fourier coefficients $(f_n g_n)$. Based on this, the Schur product on scalar matrices is also known as the Hadamard product. \\nWe show that for a C*-algebra $\\\\mathcal{A} $, and a discrete group $G$ with an action $\\\\alpha _g$ of $G$ on $\\\\mathcal{A} $ by *-automorphisms, the reduced crossed product C*-algebra $\\\\mathrm {C}^*_r(\\\\mathcal{A} , \\\\alpha , G)$ possesses a natural generalization of the convolution product, which we suggest should be named the Hadamard product. \\nWe show that this product has a natural Stinespring representation and we lift some known results on block Schur products to this setting, but we also show that the block Schur product is a special case of the Hadamard product in a crossed product algebra.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-121069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-121069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

给定两个$n \乘以n$矩阵$A =(a_{ij})$和$B=(b_{ij}) $,它们的块舒尔积是$n \乘以n$矩阵$A \平方B:= (a_{ij}b_{ij})$,对于某些希尔伯特空间$H$。给定环面上的两个连续函数f和g,它们的傅里叶系数分别是f (f_n)和g (g_n)它们的卷积积f * g的傅里叶系数是f (f_n) g_n。基于此,标量矩阵上的舒尔积又称为哈达玛积。我们证明了对于一个C*-代数$\mathcal{a} $和一个离散群$G$在$\mathcal{a} $上具有$\ α _g$的作用$\ α _g$,通过*-自同构,C*-代数$\ mathm {C}^*_r(\mathcal{a}, \ α, G)$具有卷积积的自然泛化,我们建议将其命名为Hadamard积。我们证明了这个乘积有一个自然的stinspring表示,我们将一些已知的关于块舒尔积的结果提升到这个设置,但我们也证明了块舒尔积是交叉积代数中Hadamard积的一个特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The block Schur product is a Hadamard product
Given two $n \times n $ matrices $A = (a_{ij})$ and $B=(b_{ij}) $ with entries in $B(H)$ for some Hilbert space $H$, their block Schur product is the $n \times n$ matrix $ A\square B := (a_{ij}b_{ij})$. Given two continuous functions $f$ and $g$ on the torus with Fourier coefficients $(f_n)$ and $(g_n)$ their convolution product $f \star g$ has Fourier coefficients $(f_n g_n)$. Based on this, the Schur product on scalar matrices is also known as the Hadamard product. We show that for a C*-algebra $\mathcal{A} $, and a discrete group $G$ with an action $\alpha _g$ of $G$ on $\mathcal{A} $ by *-automorphisms, the reduced crossed product C*-algebra $\mathrm {C}^*_r(\mathcal{A} , \alpha , G)$ possesses a natural generalization of the convolution product, which we suggest should be named the Hadamard product. We show that this product has a natural Stinespring representation and we lift some known results on block Schur products to this setting, but we also show that the block Schur product is a special case of the Hadamard product in a crossed product algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信