{"title":"基于大数据的医疗数据网络安全及隐私保护方法","authors":"Jianhong Li, An Pan, Tongxing Zheng","doi":"10.4018/ijdwm.325222","DOIUrl":null,"url":null,"abstract":"Big data brings new opportunities to discover the new value of healthcare industry, since it can help us understand the hidden value of data deeply. This also brings new challenges: how to effectively manage and organize these datasets. Throughout the whole life cycle of publishing, storing, mining, and using big data in health care, different users are involved, so there are corresponding privacy protection methods and technologies for different life cycles. Data usage is the last and most important part of the whole life cycle. Therefore, this article proposes a privacy protection method for large medical data: an access control based on credibility of the requesting user. This model evaluates and quantifies doctors' credibility from the perspective of behavioral trust. Comparative experiments show that under the background of linear, geometric and exponential distribution trends and mixed trends, the regression model in this article is better than the existing methods in predicting trust accuracy and trust trends.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cybersecurity of Medical Data Based on Big Data and Privacy Protection Method\",\"authors\":\"Jianhong Li, An Pan, Tongxing Zheng\",\"doi\":\"10.4018/ijdwm.325222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data brings new opportunities to discover the new value of healthcare industry, since it can help us understand the hidden value of data deeply. This also brings new challenges: how to effectively manage and organize these datasets. Throughout the whole life cycle of publishing, storing, mining, and using big data in health care, different users are involved, so there are corresponding privacy protection methods and technologies for different life cycles. Data usage is the last and most important part of the whole life cycle. Therefore, this article proposes a privacy protection method for large medical data: an access control based on credibility of the requesting user. This model evaluates and quantifies doctors' credibility from the perspective of behavioral trust. Comparative experiments show that under the background of linear, geometric and exponential distribution trends and mixed trends, the regression model in this article is better than the existing methods in predicting trust accuracy and trust trends.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.325222\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.325222","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Cybersecurity of Medical Data Based on Big Data and Privacy Protection Method
Big data brings new opportunities to discover the new value of healthcare industry, since it can help us understand the hidden value of data deeply. This also brings new challenges: how to effectively manage and organize these datasets. Throughout the whole life cycle of publishing, storing, mining, and using big data in health care, different users are involved, so there are corresponding privacy protection methods and technologies for different life cycles. Data usage is the last and most important part of the whole life cycle. Therefore, this article proposes a privacy protection method for large medical data: an access control based on credibility of the requesting user. This model evaluates and quantifies doctors' credibility from the perspective of behavioral trust. Comparative experiments show that under the background of linear, geometric and exponential distribution trends and mixed trends, the regression model in this article is better than the existing methods in predicting trust accuracy and trust trends.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving