{"title":"可可果皮活性炭制备储能用超级电容器","authors":"Rahma Fikri Nuradi, M. Muldarisnur, Y. Yetri","doi":"10.25077/jif.14.2.86-94.2022","DOIUrl":null,"url":null,"abstract":"The supercapacitor electrode has been synthesized using activated carbon from cocoa pods. Activated carbon was prepared by first drying the raw materials under the sunlight and followed by oven drying, pre-carbonization, milling, sieving, and chemical activation with 0.3 M and 0.4 M KOH solution. After chemical activation, the activated carbon was printed into pellet form, carbonized at a temperature of 600 °C, followed by physical activation at a temperature of 700 °C for four hours before polishing. We found that the optimum conditions are 700 °C and 0.4 M. The density of the obtained carbon electrode is 0.810 g/cm3. The SEM micrographs show the formation of pores with a diameter of 0.44 μm and 0.98 μm. The carbon content in the electrode sample measured using electron dispersive spectroscopy is 91.49%. The XRD data shows that the carbon electrode is amorphous with a diffraction angle (2θ) at 23.569° and 44.781°. The optimum specific capacitance of the supercapacitor is 140.2 F/g obtained for the sample activated for 2.5 hours.","PeriodicalId":52720,"journal":{"name":"JIF Jurnal Ilmu Fisika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of Supercapacitor from Cocoa Fruit Peel Activated Carbon for Energy Storage\",\"authors\":\"Rahma Fikri Nuradi, M. Muldarisnur, Y. Yetri\",\"doi\":\"10.25077/jif.14.2.86-94.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The supercapacitor electrode has been synthesized using activated carbon from cocoa pods. Activated carbon was prepared by first drying the raw materials under the sunlight and followed by oven drying, pre-carbonization, milling, sieving, and chemical activation with 0.3 M and 0.4 M KOH solution. After chemical activation, the activated carbon was printed into pellet form, carbonized at a temperature of 600 °C, followed by physical activation at a temperature of 700 °C for four hours before polishing. We found that the optimum conditions are 700 °C and 0.4 M. The density of the obtained carbon electrode is 0.810 g/cm3. The SEM micrographs show the formation of pores with a diameter of 0.44 μm and 0.98 μm. The carbon content in the electrode sample measured using electron dispersive spectroscopy is 91.49%. The XRD data shows that the carbon electrode is amorphous with a diffraction angle (2θ) at 23.569° and 44.781°. The optimum specific capacitance of the supercapacitor is 140.2 F/g obtained for the sample activated for 2.5 hours.\",\"PeriodicalId\":52720,\"journal\":{\"name\":\"JIF Jurnal Ilmu Fisika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIF Jurnal Ilmu Fisika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jif.14.2.86-94.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIF Jurnal Ilmu Fisika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jif.14.2.86-94.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
以可可荚为原料,用活性炭合成了超级电容器电极。首先将原料在阳光下干燥,然后进行烘箱干燥、预碳化、磨粉、筛分、用0.3 M和0.4 M KOH溶液化学活化制备活性炭。经化学活化后,将活性炭打印成颗粒状,在600℃下碳化,然后在700℃下物理活化4小时,最后抛光。我们发现最佳条件是700°C和0.4 m,得到的碳电极密度为0.810 g/cm3。SEM显微图显示形成了直径分别为0.44 μm和0.98 μm的孔隙。用电子色散谱法测得电极样品中的碳含量为91.49%。XRD数据表明,碳电极呈无定形,在23.569°和44.781°处的衍射角为2θ。在活化2.5小时的情况下,超级电容器的最佳比电容为140.2 F/g。
Synthesis of Supercapacitor from Cocoa Fruit Peel Activated Carbon for Energy Storage
The supercapacitor electrode has been synthesized using activated carbon from cocoa pods. Activated carbon was prepared by first drying the raw materials under the sunlight and followed by oven drying, pre-carbonization, milling, sieving, and chemical activation with 0.3 M and 0.4 M KOH solution. After chemical activation, the activated carbon was printed into pellet form, carbonized at a temperature of 600 °C, followed by physical activation at a temperature of 700 °C for four hours before polishing. We found that the optimum conditions are 700 °C and 0.4 M. The density of the obtained carbon electrode is 0.810 g/cm3. The SEM micrographs show the formation of pores with a diameter of 0.44 μm and 0.98 μm. The carbon content in the electrode sample measured using electron dispersive spectroscopy is 91.49%. The XRD data shows that the carbon electrode is amorphous with a diffraction angle (2θ) at 23.569° and 44.781°. The optimum specific capacitance of the supercapacitor is 140.2 F/g obtained for the sample activated for 2.5 hours.