广义保序变换半群的秩

IF 0.8 4区 数学 Q2 MATHEMATICS
Haytham Darweesh Mustafa Abusarris, G. Ayık
{"title":"广义保序变换半群的秩","authors":"Haytham Darweesh Mustafa Abusarris, G. Ayık","doi":"10.55730/1300-0098.3420","DOIUrl":null,"url":null,"abstract":": For any two non-empty (disjoint) chains X and Y , and for a fixed order-preserving transformation θ : Y → X , let GO ( X, Y ; θ ) be the generalized order-preserving transformation semigroup. Let O ( Z ) be the order-preserving transformation semigroup on the set Z = X ∪ Y with a defined order. In this paper, we show that GO ( X, Y ; θ ) can be embedded in O ( Z, Y ) = { α ∈ O ( Z ) : Zα ⊆ Y } , the semigroup of order-preserving transformations with restricted range. If θ ∈ GO ( Y, X ) is one-to-one, then we show that GO ( X, Y ; θ ) and O ( X, im ( θ )) are isomorphic semigroups. If we suppose that | X | = m , | Y | = n , and | im ( θ ) | = r where m, n, r ∈ N , then we find the rank of GO ( X, Y ; θ ) when θ is one-to-one but not onto. Moreover, we find lower bounds for rank ( GO ( X, Y ; θ )) when θ is neither one-to-one nor onto and when θ is onto but not one-to-one.","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the rank of generalized order-preserving transformation semigroups\",\"authors\":\"Haytham Darweesh Mustafa Abusarris, G. Ayık\",\"doi\":\"10.55730/1300-0098.3420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": For any two non-empty (disjoint) chains X and Y , and for a fixed order-preserving transformation θ : Y → X , let GO ( X, Y ; θ ) be the generalized order-preserving transformation semigroup. Let O ( Z ) be the order-preserving transformation semigroup on the set Z = X ∪ Y with a defined order. In this paper, we show that GO ( X, Y ; θ ) can be embedded in O ( Z, Y ) = { α ∈ O ( Z ) : Zα ⊆ Y } , the semigroup of order-preserving transformations with restricted range. If θ ∈ GO ( Y, X ) is one-to-one, then we show that GO ( X, Y ; θ ) and O ( X, im ( θ )) are isomorphic semigroups. If we suppose that | X | = m , | Y | = n , and | im ( θ ) | = r where m, n, r ∈ N , then we find the rank of GO ( X, Y ; θ ) when θ is one-to-one but not onto. Moreover, we find lower bounds for rank ( GO ( X, Y ; θ )) when θ is neither one-to-one nor onto and when θ is onto but not one-to-one.\",\"PeriodicalId\":51206,\"journal\":{\"name\":\"Turkish Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0098.3420\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3420","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

:对于任意两个非空(不相交)链X和Y,对于一个固定保序变换θ: Y→X,令GO (X, Y;θ)为广义保序变换半群。设O (Z)是集Z = X∪Y上具有定义阶的保序变换半群。本文证明了GO (X, Y;θ)可以嵌入到O (Z, Y) = {α∈O (Z): Zα≤Y}中,即保序变换的受限范围半群。如果θ∈GO (Y, X)是一对一的,则证明GO (X, Y;θ)和O (X, im (θ))是同构半群。假设| X | = m, | Y | = n, | im (θ) | = r,其中m, n, r∈n,则求出GO (X, Y;θ), θ是一对一的,但不是映上的。此外,我们还找到了rank (GO (X, Y;θ既不是一对一的也不是映上的,θ是映上的但不是一对一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the rank of generalized order-preserving transformation semigroups
: For any two non-empty (disjoint) chains X and Y , and for a fixed order-preserving transformation θ : Y → X , let GO ( X, Y ; θ ) be the generalized order-preserving transformation semigroup. Let O ( Z ) be the order-preserving transformation semigroup on the set Z = X ∪ Y with a defined order. In this paper, we show that GO ( X, Y ; θ ) can be embedded in O ( Z, Y ) = { α ∈ O ( Z ) : Zα ⊆ Y } , the semigroup of order-preserving transformations with restricted range. If θ ∈ GO ( Y, X ) is one-to-one, then we show that GO ( X, Y ; θ ) and O ( X, im ( θ )) are isomorphic semigroups. If we suppose that | X | = m , | Y | = n , and | im ( θ ) | = r where m, n, r ∈ N , then we find the rank of GO ( X, Y ; θ ) when θ is one-to-one but not onto. Moreover, we find lower bounds for rank ( GO ( X, Y ; θ )) when θ is neither one-to-one nor onto and when θ is onto but not one-to-one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信