基于三维PIV试验的水滴冲击流场及气泡夹带实验研究

IF 1.7 3区 工程技术 Q3 ENGINEERING, CIVIL
Xun Han, Wang-ru Wei, P. Lin, Jun Deng, Wei-lin Xu
{"title":"基于三维PIV试验的水滴冲击流场及气泡夹带实验研究","authors":"Xun Han, Wang-ru Wei, P. Lin, Jun Deng, Wei-lin Xu","doi":"10.1080/00221686.2023.2201357","DOIUrl":null,"url":null,"abstract":"The phenomenon of a water droplet impact on a free surface is studied to understand the physics of free surface bubble entrainment. Particle image velocimetry (PIV) and high-speed image system are used to analyse the flow structure evolutions in the droplet impact cavity period and bubble entrainment cavity period, respectively. The photographic results show that the entrapped surface of the impact cavity remains intact and continuous, and individual bubble entrainment occurs during the secondary entrainment cavity evolution. The instantaneous distributions of velocity fields in the longitudinal and lateral directions are uniform and independent of the approaching impact velocity. For the entrainment cavity evolution, the transverse diffusion intensity is higher than that for the impact cavity period. An individual bubble forms during the transverse velocity penetration across the droplet impact area. Consequently, for the droplet impact on a water surface, the present study implies the presence of a mechanism by which the interior flow field plays a key role in the bubble entrainment.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on flow fields and bubble entrainments by the water droplet impact using 3D PIV tests\",\"authors\":\"Xun Han, Wang-ru Wei, P. Lin, Jun Deng, Wei-lin Xu\",\"doi\":\"10.1080/00221686.2023.2201357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phenomenon of a water droplet impact on a free surface is studied to understand the physics of free surface bubble entrainment. Particle image velocimetry (PIV) and high-speed image system are used to analyse the flow structure evolutions in the droplet impact cavity period and bubble entrainment cavity period, respectively. The photographic results show that the entrapped surface of the impact cavity remains intact and continuous, and individual bubble entrainment occurs during the secondary entrainment cavity evolution. The instantaneous distributions of velocity fields in the longitudinal and lateral directions are uniform and independent of the approaching impact velocity. For the entrainment cavity evolution, the transverse diffusion intensity is higher than that for the impact cavity period. An individual bubble forms during the transverse velocity penetration across the droplet impact area. Consequently, for the droplet impact on a water surface, the present study implies the presence of a mechanism by which the interior flow field plays a key role in the bubble entrainment.\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2201357\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2201357","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

研究了水滴撞击自由表面的现象,以了解自由表面气泡夹带的物理性质。利用粒子图像测速仪(PIV)和高速成像系统分别分析了液滴撞击空腔和气泡夹带空腔两个阶段的流动结构演变。摄影结果表明,撞击腔的截留表面保持完整和连续,在二次夹带腔演化过程中发生了单个气泡夹带。速度场在纵向和横向上的瞬时分布是均匀的,并且与接近的冲击速度无关。对于夹带空腔的演变,横向扩散强度高于冲击空腔时期的横向扩散强度。单个气泡在液滴撞击区域的横向速度穿透过程中形成。因此,对于液滴在水面上的冲击,本研究暗示了内部流场在气泡夹带中起关键作用的机制的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on flow fields and bubble entrainments by the water droplet impact using 3D PIV tests
The phenomenon of a water droplet impact on a free surface is studied to understand the physics of free surface bubble entrainment. Particle image velocimetry (PIV) and high-speed image system are used to analyse the flow structure evolutions in the droplet impact cavity period and bubble entrainment cavity period, respectively. The photographic results show that the entrapped surface of the impact cavity remains intact and continuous, and individual bubble entrainment occurs during the secondary entrainment cavity evolution. The instantaneous distributions of velocity fields in the longitudinal and lateral directions are uniform and independent of the approaching impact velocity. For the entrainment cavity evolution, the transverse diffusion intensity is higher than that for the impact cavity period. An individual bubble forms during the transverse velocity penetration across the droplet impact area. Consequently, for the droplet impact on a water surface, the present study implies the presence of a mechanism by which the interior flow field plays a key role in the bubble entrainment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydraulic Research
Journal of Hydraulic Research 工程技术-工程:土木
CiteScore
4.90
自引率
4.30%
发文量
55
审稿时长
6.6 months
期刊介绍: The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信