{"title":"磁性Fe3O4–TGT纳米复合材料的合成、表征及其在去除水溶液中Pb(II)中的应用","authors":"J. Anuradha, N. Muthulakshmi Andal","doi":"10.3233/ajw230011","DOIUrl":null,"url":null,"abstract":"Magnetic Adsorption Separation (MAS) method is an ideal substitute for the environmental clean-up process. Magnetic material embedded with natural litter material is a facile route to achieve maximum adsorptive ability at a lower dosage, contact time and increased chance of metal-laden adsorbents’ recovery from aqueous matrices. In the present study, the synthesis of Fe3O4–TGT composite (TGT- C2) by the auto combustion method and its employment for Pb(II) removal from aqueous solutions is discussed. TGT- C2 is characterised using VSM (Vibrating Sample Magnetometer), SEM (Scanning Electron Microscope), Particle Size Analyzer, EDAX (Energy Dispersive X-ray Spectrometer) and FTIR (Fourier Transform Infra Red Spectrophotometer) techniques. TGT- C2 is found to be magnetic in nature and their saturation magnetization (Ms)/ Coercivity (Hc) values are calculated as 1.54 emu g-1/139.83 G, respectively, being less than bare Fe3O4. The synthesised nanocomposite registered a maximum of 98% sequestration of Pb(II) ions under the optimised conditions of 100 mg/L initial metal ion concentration, 10 min agitation time, 50 mg dosage and pH 5 environment. Isothermal verification, the kinetics of adsorption and successive desorption/ regeneration cycles were performed. The outcomes support the preparation of bio-nanocomposites from animal waste was successful in the efficient trapping of divalent metal ions.","PeriodicalId":8553,"journal":{"name":"Asian Journal of Water, Environment and Pollution","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Characterisation and Utilisation of Magnetic Fe3O4 – TGT Nanocomposite in the Removal of Pb(II) from Aqueous Solutions\",\"authors\":\"J. Anuradha, N. Muthulakshmi Andal\",\"doi\":\"10.3233/ajw230011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic Adsorption Separation (MAS) method is an ideal substitute for the environmental clean-up process. Magnetic material embedded with natural litter material is a facile route to achieve maximum adsorptive ability at a lower dosage, contact time and increased chance of metal-laden adsorbents’ recovery from aqueous matrices. In the present study, the synthesis of Fe3O4–TGT composite (TGT- C2) by the auto combustion method and its employment for Pb(II) removal from aqueous solutions is discussed. TGT- C2 is characterised using VSM (Vibrating Sample Magnetometer), SEM (Scanning Electron Microscope), Particle Size Analyzer, EDAX (Energy Dispersive X-ray Spectrometer) and FTIR (Fourier Transform Infra Red Spectrophotometer) techniques. TGT- C2 is found to be magnetic in nature and their saturation magnetization (Ms)/ Coercivity (Hc) values are calculated as 1.54 emu g-1/139.83 G, respectively, being less than bare Fe3O4. The synthesised nanocomposite registered a maximum of 98% sequestration of Pb(II) ions under the optimised conditions of 100 mg/L initial metal ion concentration, 10 min agitation time, 50 mg dosage and pH 5 environment. Isothermal verification, the kinetics of adsorption and successive desorption/ regeneration cycles were performed. The outcomes support the preparation of bio-nanocomposites from animal waste was successful in the efficient trapping of divalent metal ions.\",\"PeriodicalId\":8553,\"journal\":{\"name\":\"Asian Journal of Water, Environment and Pollution\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Water, Environment and Pollution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ajw230011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Water, Environment and Pollution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ajw230011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Synthesis, Characterisation and Utilisation of Magnetic Fe3O4 – TGT Nanocomposite in the Removal of Pb(II) from Aqueous Solutions
Magnetic Adsorption Separation (MAS) method is an ideal substitute for the environmental clean-up process. Magnetic material embedded with natural litter material is a facile route to achieve maximum adsorptive ability at a lower dosage, contact time and increased chance of metal-laden adsorbents’ recovery from aqueous matrices. In the present study, the synthesis of Fe3O4–TGT composite (TGT- C2) by the auto combustion method and its employment for Pb(II) removal from aqueous solutions is discussed. TGT- C2 is characterised using VSM (Vibrating Sample Magnetometer), SEM (Scanning Electron Microscope), Particle Size Analyzer, EDAX (Energy Dispersive X-ray Spectrometer) and FTIR (Fourier Transform Infra Red Spectrophotometer) techniques. TGT- C2 is found to be magnetic in nature and their saturation magnetization (Ms)/ Coercivity (Hc) values are calculated as 1.54 emu g-1/139.83 G, respectively, being less than bare Fe3O4. The synthesised nanocomposite registered a maximum of 98% sequestration of Pb(II) ions under the optimised conditions of 100 mg/L initial metal ion concentration, 10 min agitation time, 50 mg dosage and pH 5 environment. Isothermal verification, the kinetics of adsorption and successive desorption/ regeneration cycles were performed. The outcomes support the preparation of bio-nanocomposites from animal waste was successful in the efficient trapping of divalent metal ions.
期刊介绍:
Asia, as a whole region, faces severe stress on water availability, primarily due to high population density. Many regions of the continent face severe problems of water pollution on local as well as regional scale and these have to be tackled with a pan-Asian approach. However, the available literature on the subject is generally based on research done in Europe and North America. Therefore, there is an urgent and strong need for an Asian journal with its focus on the region and wherein the region specific problems are addressed in an intelligent manner. In Asia, besides water, there are several other issues related to environment, such as; global warming and its impact; intense land/use and shifting pattern of agriculture; issues related to fertilizer applications and pesticide residues in soil and water; and solid and liquid waste management particularly in industrial and urban areas. Asia is also a region with intense mining activities whereby serious environmental problems related to land/use, loss of top soil, water pollution and acid mine drainage are faced by various communities. Essentially, Asians are confronted with environmental problems on many fronts. Many pressing issues in the region interlink various aspects of environmental problems faced by population in this densely habited region in the world. Pollution is one such serious issue for many countries since there are many transnational water bodies that spread the pollutants across the entire region. Water, environment and pollution together constitute a three axial problem that all concerned people in the region would like to focus on.