黎曼流形中的Weingarten流

IF 0.6 Q3 MATHEMATICS
R. F. Lima
{"title":"黎曼流形中的Weingarten流","authors":"R. F. Lima","doi":"10.1215/00192082-10817329","DOIUrl":null,"url":null,"abstract":"Given orientable Riemannian manifolds $M^n$ and $\\bar M^{n+1},$ we study flows $F_t:M^n\\rightarrow\\bar M^{n+1},$ called Weingarten flows,in which the hypersurfaces $F_t(M)$ evolve in the direction of their normal vectors with speed given by a function $W$ of their principal curvatures,called a Weingarten function, which is homogeneous, monotonic increasing with respect to any of its variables, and positive on the positive cone. We obtain existence results for flows with isoparametric initial data, in which the hypersurfaces $F_t:M^n\\rightarrow\\bar M^{n+1}$ are all parallel, and $\\bar M^{n+1}$ is either a simply connected space form or a rank-one symmetric space of noncompact type. We prove that the avoidance principle holds for Weingarten flows defined by odd Weingarten functions, and also that such flows are embedding preserving.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weingarten flows in Riemannian manifolds\",\"authors\":\"R. F. Lima\",\"doi\":\"10.1215/00192082-10817329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given orientable Riemannian manifolds $M^n$ and $\\\\bar M^{n+1},$ we study flows $F_t:M^n\\\\rightarrow\\\\bar M^{n+1},$ called Weingarten flows,in which the hypersurfaces $F_t(M)$ evolve in the direction of their normal vectors with speed given by a function $W$ of their principal curvatures,called a Weingarten function, which is homogeneous, monotonic increasing with respect to any of its variables, and positive on the positive cone. We obtain existence results for flows with isoparametric initial data, in which the hypersurfaces $F_t:M^n\\\\rightarrow\\\\bar M^{n+1}$ are all parallel, and $\\\\bar M^{n+1}$ is either a simply connected space form or a rank-one symmetric space of noncompact type. We prove that the avoidance principle holds for Weingarten flows defined by odd Weingarten functions, and also that such flows are embedding preserving.\",\"PeriodicalId\":56298,\"journal\":{\"name\":\"Illinois Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Illinois Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00192082-10817329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10817329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定可定向黎曼流形$M^n$和$\bar M^{n+1},$我们研究流$F_t:M^n\rightarrow\bar M^{n+1},$称为Weingarten流,其中超曲面$F_t(M)$以其主曲率的函数$W$给定的速度在其法向量的方向上演化,称为Weingarten函数,该函数是齐次的,相对于其任何变量单调递增,在正锥体上为正。我们得到了具有等参初始数据的流的存在性结果,其中超曲面$F_t:M^n\rightarrow\bar M^{n+1}$都是平行的,$\bar M^{n+1}$要么是单连通空间形式,要么是非紧型的秩一对称空间。我们证明了由奇Weingarten函数定义的Weingarten-flow的回避原理成立,并且证明了这种流是嵌入保持的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weingarten flows in Riemannian manifolds
Given orientable Riemannian manifolds $M^n$ and $\bar M^{n+1},$ we study flows $F_t:M^n\rightarrow\bar M^{n+1},$ called Weingarten flows,in which the hypersurfaces $F_t(M)$ evolve in the direction of their normal vectors with speed given by a function $W$ of their principal curvatures,called a Weingarten function, which is homogeneous, monotonic increasing with respect to any of its variables, and positive on the positive cone. We obtain existence results for flows with isoparametric initial data, in which the hypersurfaces $F_t:M^n\rightarrow\bar M^{n+1}$ are all parallel, and $\bar M^{n+1}$ is either a simply connected space form or a rank-one symmetric space of noncompact type. We prove that the avoidance principle holds for Weingarten flows defined by odd Weingarten functions, and also that such flows are embedding preserving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信